Complete Solutions Manual

Technical Calculus with Analytic Geometry

FIFTH EDITION

Peter Kuhfittig
Milwaukee School of Engineering
Contents

1 Introduction to Analytic Geometry

- 1.1 The Cartesian Coordinate System .. 1
- 1.2 The Slope .. 3
- 1.3 The Straight Line ... 5
- 1.4 Curve Sketching ... 10
- 1.5 Curves with Graphing Utilities ... 23
- 1.7 The Circle .. 27
- 1.8 The Parabola ... 34
- 1.9 The Ellipse ... 40
- 1.10 The Hyperbola ... 50
- 1.11 Translation of Axes; Standard Equations of the Conics 56

Chapter 1 Review ... 72

2 Introduction to Calculus: The Derivative

- 2.1 Functions and Intervals ... 81
- 2.2 Limits .. 84
- 2.4 The Derivative by the Four-Step Process 89
- 2.5 Derivatives of Polynomials ... 95
- 2.6 Instantaneous Rates of Change .. 97
- 2.7 Differentiation Formulas .. 102
- 2.8 Implicit Differentiation .. 113
- 2.9 Higher Derivatives .. 119

Chapter 2 Review ... 121

3 Applications of the Derivative

- 3.1 The First-Derivative Test .. 127
- 3.2 The Second-Derivative Test .. 136
- 3.3 Exploring with Graphing Utilities 153
- 3.4 Applications of Minima and Maxima 158
- 3.5 Related Rates ... 171
- 3.6 Differentials ... 180

Chapter 3 Review ... 182
4 The Integral

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Antiderivatives</td>
<td>193</td>
</tr>
<tr>
<td>4.2 The Area Problem</td>
<td>194</td>
</tr>
<tr>
<td>4.3 The Fundamental Theorem of Calculus</td>
<td>196</td>
</tr>
<tr>
<td>4.5 Basic Integration Formulas</td>
<td>197</td>
</tr>
<tr>
<td>4.6 Area Between Curves</td>
<td>202</td>
</tr>
<tr>
<td>4.7 Improper Integrals</td>
<td>215</td>
</tr>
<tr>
<td>4.8 The Constant of Integration</td>
<td>223</td>
</tr>
<tr>
<td>4.9 Numerical Integration</td>
<td>232</td>
</tr>
<tr>
<td>Chapter 4 Review</td>
<td>238</td>
</tr>
</tbody>
</table>

5 Applications of the Integral

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Means and Root Mean Squares</td>
<td>245</td>
</tr>
<tr>
<td>5.2 Volumes of Revolution: Disk and Washer Methods</td>
<td>247</td>
</tr>
<tr>
<td>5.3 Volumes of Revolution: Shell Method</td>
<td>256</td>
</tr>
<tr>
<td>5.4 Centroids</td>
<td>270</td>
</tr>
<tr>
<td>5.5 Moments of Inertia</td>
<td>288</td>
</tr>
<tr>
<td>5.6 Work and Fluid Pressure</td>
<td>301</td>
</tr>
<tr>
<td>Chapter 5 Review</td>
<td>318</td>
</tr>
</tbody>
</table>

6 Derivatives of Transcendental Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Review of Trigonometry</td>
<td>327</td>
</tr>
<tr>
<td>6.2 Derivatives of Sine and Cosine Functions</td>
<td>331</td>
</tr>
<tr>
<td>6.3 Other Trigonometric Functions</td>
<td>336</td>
</tr>
<tr>
<td>6.4 Inverse Trigonometric Functions</td>
<td>341</td>
</tr>
<tr>
<td>6.5 Derivatives of Inverse Trigonometric Functions</td>
<td>346</td>
</tr>
<tr>
<td>6.6 Exponential and Logarithmic Functions</td>
<td>350</td>
</tr>
<tr>
<td>6.7 Derivative of the Logarithmic Function</td>
<td>354</td>
</tr>
<tr>
<td>6.8 Derivative of the Exponential Function</td>
<td>358</td>
</tr>
<tr>
<td>6.9 L'Hospital's Rule</td>
<td>362</td>
</tr>
<tr>
<td>6.10 Applications</td>
<td>365</td>
</tr>
<tr>
<td>6.11 Newton's Method</td>
<td>373</td>
</tr>
<tr>
<td>Chapter 6 Review</td>
<td>376</td>
</tr>
</tbody>
</table>

7 Integration Techniques

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 The Power Formula Again</td>
<td>383</td>
</tr>
<tr>
<td>7.2 The Logarithmic and Exponential Forms</td>
<td>386</td>
</tr>
<tr>
<td>7.3 Trigonometric Forms</td>
<td>394</td>
</tr>
<tr>
<td>7.4 Further Trigonometric Forms</td>
<td>399</td>
</tr>
<tr>
<td>7.5 Inverse Trigonometric Forms</td>
<td>409</td>
</tr>
<tr>
<td>7.6 Integration by Trigonometric Substitution</td>
<td>414</td>
</tr>
<tr>
<td>7.7 Integration by Parts</td>
<td>425</td>
</tr>
<tr>
<td>7.8 Integration of Rational Functions</td>
<td>431</td>
</tr>
<tr>
<td>7.9 Integration by Use of Tables</td>
<td>439</td>
</tr>
<tr>
<td>Chapter 7 Review</td>
<td>443</td>
</tr>
</tbody>
</table>
CONTENTS

8 Parametric Equations, Vectors, and Polar Coordinates
8.1 Vectors and Parametric Equations 451
8.2 Arc Length .. 459
8.3 Polar Coordinates .. 463
8.4 Curves in Polar Coordinates .. 469
8.5 Areas in Polar Coordinates; Tangents 476
Chapter 8 Review ... 488

9 Three Dim. Space; Partial Derivatives; Multiple Integrals
9.1 Surfaces in Three Dimensions 493
9.2 Partial Derivatives ... 506
9.3 Applications of Partial Derivatives 514
9.4 Iterated Integrals .. 525
9.5 Volumes by Double Integration 535
9.6 Mass, Centroids, and Moments of Inertia 545
9.7 Volumes in Cylindrical Coordinates 558
Chapter 9 Review ... 564

10 Infinite Series
10.1 Introduction to Infinite Series 575
10.2 Tests for Convergence .. 579
10.3 Maclaurin Series ... 584
10.4 Operations with Series .. 588
10.5 Computations with Series; Applications 591
10.6 Fourier Series .. 601
Chapter 10 Review .. 615

11 First-Order Differential Equations
11.1 What is a Differential Equation? 621
11.2 Separation of Variables .. 624
11.3 First-Order Linear Differential Equations 634
11.4 Applications of First-Order Differential Equations 647
11.5 Numerical Solutions ... 662
Chapter 11 Review ... 666

12 Higher-Order Linear Differential Equations
12.1 Higher-Order Homogeneous Differential Equations 675
12.2 Auxiliary Equations with Repeating or Complex Roots 680
12.3 Nonhomogeneous Equations 686
12.4 Applications of Second-Order Equations 704
Chapter 12 Review ... 720

13 The Laplace Transform
Sections 13.1-13.3 ... 727
13.4 Solution of Linear Equations by Laplace Transforms 740
Chapter 13 Review .. 759

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 1

Introduction to Analytic Geometry

1.1 The Cartesian Coordinate System

1. Let \((x_2, y_2) = (2, 4)\) and \((x_1, y_1) = (5, 2)\). From the distance formula

\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

we get

\[d = \sqrt{(2 - 5)^2 + (4 - 2)^2} = \sqrt{(-3)^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}. \]

2. Let \((x_2, y_2) = (-3, 2)\) and \((x_1, y_1) = (5, -4)\). From the distance formula

\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

we get

\[d = \sqrt{(-3 - 5)^2 + (2 - (-4))^2} = \sqrt{(-8)^2 + 6^2} = \sqrt{64 + 36} = 10. \]

3. Let \((x_2, y_2) = (-3, -6)\) and \((x_1, y_1) = (5, -2)\). Then

\[d = \sqrt{(-3 - 5)^2 + (-6 - (-2))^2} = \sqrt{(-8)^2 + (-4)^2} = \sqrt{64 + 16} = \sqrt{16 \cdot 5} = 4\sqrt{5}. \]

4. Let \((x_2, y_2) = (-\sqrt{5}, 2)\) and \((x_1, y_1) = (0, 0)\).

Then \(d = \sqrt{(-\sqrt{5} - 0)^2 + (2 - 0)^2} = \sqrt{5 + 4} = 3 \)

5. Let \((x_2, y_2) = (\sqrt{3}, 4)\) and \((x_1, y_1) = (0, 2)\). Then

\[d = \sqrt{(\sqrt{3} - 0)^2 + (4 - 2)^2} = \sqrt{3 + 4} = \sqrt{7}. \]

6. \(d = \sqrt{\left(\sqrt{2} - \sqrt{2}\right)^2 + (\sqrt{5} - 0)^2} = \sqrt{0 + 5} = \sqrt{5} \)

7. \(d = \sqrt{[1 - (-1)]^2 + (-\sqrt{2} - 0)^2} = \sqrt{4 + 2} = \sqrt{6} \)

8. \(d = \sqrt{[2 - (-2)]^2 + (7 - 3)^2} = \sqrt{16 + 16} = \sqrt{2 \cdot 16} = 4\sqrt{2} \)

9. \(d = \sqrt{[-9 - (-11)]^2 + (-1 - 1)^2} = \sqrt{24 + (-2)^2} = \sqrt{8} = \sqrt{2 \cdot 4} = 2\sqrt{2} \)

10. Distance from \((0, 0)\) to \((4, 3)\): \(\sqrt{(4 - 0)^2 + (3 - 0)^2} = \sqrt{16 + 9} = 5 \). Distance from \((0, 0)\) to \((6, 0)\): \(\sqrt{(6 - 4)^2 + (0 - 3)^2} = \sqrt{4 + 9} = \sqrt{13} \).

Perimeter = \(5 + 6 + \sqrt{13} = 11 + \sqrt{13} \).
11b. \(x/y \) is negative whenever \(x \) and \(y \) have opposite signs: quadrants II and IV.

12. If \(x_2 > x_1 \), then \(x_2 - x_1 = P_1P_3 = |x_2 - x_1| \). If \(x_2 < x_1 \), then \(x_2 - x_1 = -P_1P_3 \) and \(P_1P_3 = |P_1P_3| = |x_2 - x_1| \).

13a. Any point on the \(y \)-axis has coordinates of the form \((0, y)\).

14. Distance from \((11, 2)\) to origin: \(\sqrt{(11 - 0)^2 + (2 - 0)^2} = \sqrt{125} \)
 Distance from \((-5, 10)\) to origin: \(\sqrt{(-5 - 0)^2 + (10 - 0)^2} = \sqrt{125} \)
 Distance from \((-1, -11)\) to origin: \(\sqrt{(-1 - 0)^2 + (-11 - 0)^2} = \sqrt{122} \)
 Answer: \((-1, -11)\)

15. Let \(A = (-2, -5) \), \(B = (-4, 1) \) and \(C = (5, 4) \); then \(AB = \sqrt{(-2 - (-4))^2 + (-5 - 1)^2} = \sqrt{40}, AC = \sqrt{(-2 - 5)^2 + (-5 - 4)^2} = \sqrt{130}, \) and \(BC = \sqrt{(-4 - 5)^2 + (1 - 4)^2} = \sqrt{90} \).
 Since \(AB^2 + BC^2 = AC^2 \), the triangle must be a right triangle.

16. Let \(A = (-1, -1), B = (-2, 3) \), and \(C = (6, 5) \). After calculating \(AB = \sqrt{17}, BC = \sqrt{68} \), and \(AC = \sqrt{85} \), we observe that \(AB^2 + BC^2 = AC^2 \).

17. The points \((12, 0), (-4, 8)\) and \((-1, -13)\) are all \(5\sqrt{5}\) units from \((1, -2)\).

18. Distance from \((-2, 10)\) to \((3, -2)\): 13. Distance from \((15, 3)\) to \((3, -2)\): 13.

19. Distance from \((-1, -1)\) to \((2, 8)\):
 \[\sqrt{(-1 - 2)^2 + (-1 - 8)^2} = \sqrt{9 + 81} = \sqrt{90} = \sqrt{9 \cdot 10} = 3\sqrt{10} \]
 Distance from \((2, 8)\) to \((5, 17)\):
 \[\sqrt{(5 - 2)^2 + (17 - 8)^2} = \sqrt{90} = 3\sqrt{10} \]
 Distance from \((-1, -1)\) to \((5, 17)\):
 \[\sqrt{6^2 + 18^2} = \sqrt{360} = 6\sqrt{10} \]
 Total distance \(6\sqrt{10} = 3\sqrt{10} + 3\sqrt{10}\), the sum of the other two distances.

20. Distance from \((x, y)\) to \((-1, 2)\):
 \[d = \sqrt{(x + 1)^2 + (y - 2)^2} = 3 \]
 \[(x + 1)^2 + (y - 2)^2 = (3)^2 \] squaring both sides
 \[x^2 + 2x + 1 + y^2 - 4y + 4 = 9 \]
 \[x^2 + y^2 + 2x - 4y = 4 \]

21. Distance from \((x, y)\) to \(y\)-axis: \(x\) units
 Distance from \((x, y)\) to \((2, 0)\): \(\sqrt{(x - 2)^2 + (y - 0)^2} = \sqrt{(x - 2)^2 + y^2} \)
 By assumption,
 \[\sqrt{(x - 2)^2 + y^2} = x \]
 \[(x - 2)^2 + y^2 = x^2 \] squaring both sides
 \[x^2 - 4x + 4 + y^2 = x^2 \]
 \[y^2 - 4x + 4 = 0 \]
22. Let \((x_1, y_1) = (-3, -5)\) and \((x_2, y_2) = (-1, 7)\). Then from the midpoint formula
\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-3 + (-1)}{2}, \frac{-5 + 7}{2}\right) = (-2, 1).
\]

23. Let \((x_1, y_1) = (-2, 6)\) and \((x_2, y_2) = (2, -4)\). Then from the midpoint formula
\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)
\]
we get
\[
\left(\frac{-2 + 2}{2}, \frac{6 + (-4)}{2}\right) = (0, 1).
\]

24. \[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-3 + (-2)}{2}, \frac{5 + 9}{2}\right) = \left(-\frac{5}{2}, 7\right)
\]

25. Let \((x_1, y_1) = (5, 0)\) and \((x_2, y_2) = (9, 4)\). Then from the midpoint formula
\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)
\]
we get
\[
\left(\frac{5 + 9}{2}, \frac{0 + 4}{2}\right) = (7, 2).
\]

26. \[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-4 + (-1)}{2}, \frac{3 + (-7)}{2}\right) = \left(-\frac{5}{2}, -2\right)
\]

27. The center is the midpoint: \[
\left(\frac{-2 + 6}{2}, \frac{-1 + 11}{2}\right) = (2, 5).
\]

28. Midpoint of given line segment: (2, 6). Midpoint of line segment from (2, 6) to (-2, 4): (0, 5).

1.2 The Slope

1. Let \((x_2, y_2) = (1, 7)\) and \((x_1, y_1) = (2, 6)\). Then, by formula (1.4),
\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]
we get
\[
m = \frac{7 - 6}{1 - 2} = \frac{1}{-1} = -1.
\]

2. Let \((x_2, y_2) = (-3, -10)\) and \((x_1, y_1) = (-5, 2)\). Then by formula (1.4)
\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-10 - 2}{-3 - (-5)} = \frac{-12}{2} = -6.
\]

3. Let \((x_1, y_1) = (0, 2)\) and \((x_2, y_2) = (-4, -4)\). Then
\[
m = \frac{-4 - 2}{-4 - 0} = \frac{-6}{-4} = \frac{3}{2}
\]

4. Let \((x_2, y_2) = (6, -3)\) and \((x_1, y_1) = (4, 0)\). Then \[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 0}{6 - 4} = \frac{-3}{2} = \frac{-3}{2}.
\]

5. Let \((x_2, y_2) = (7, 8)\) and \((x_1, y_1) = (-3, -4)\). Then
\[
m = \frac{8 - (-4)}{7 - (-3)} = \frac{8 + 4}{7 + 3} = \frac{12}{10} = \frac{6}{5}.
\]
6. \(m = \frac{-4 - 0}{8 - 0} = -\frac{1}{2} \)

7. \(m = \frac{43 - (-1)}{-1 - 1} = \frac{44}{-2} = -22 \)

8. \(m = \frac{31 - 1}{0 - (-1)} = 30 \)

9. \(m = \frac{-5 - 4}{3 - 3} = \frac{-9}{0} \) (undefined)

10. \(m = \frac{6 - 6}{5 - (-3)} = \frac{0}{8} = 0 \)

11. \(m = \frac{-3 - (-3)}{9 - 5} = \frac{0}{4} = 0 \)

12. \(m = \frac{3 - (-2)}{4 - 4} = \frac{5}{0} \) (undefined)

13. \(m = \frac{3 - 2}{12 - (-2)} = \frac{1}{14} \)

14. (a) \(\tan 0^\circ = 0 \); (b) \(\tan 30^\circ = \frac{\sqrt{3}}{3} \); (c) \(\tan 150^\circ = -\frac{\sqrt{3}}{3} \); (d) \(\tan 90^\circ \) is undefined; (e) \(\tan 45^\circ = 1 \); (f) \(\tan 135^\circ = -1 \)

15. See answer section of book.

16. Slope of \(AB = \frac{0 - 2}{-2 - (-1)} = \frac{-2}{-1} = 2 \); of \(BC = \frac{5}{3} \); of \(AC = \frac{-3}{4} \).

17. Slope of given line is \(\frac{1 - (-5)}{-7 - 6} = \frac{6}{-13} = -\frac{6}{13} \). Slope of perpendicular is given by the negative reciprocal and is therefore \(\frac{-1}{-6/13} = \frac{13}{6} \).

18. Slope of line through \((-4, 6)\) and \((-1, -3)\): \(\frac{-3 - 6}{-1 - (-4)} = -3 \).
Slope of line through \((-4, 6)\) and \((1, -9)\): \(\frac{-9 - 6}{1 - (-4)} = -3 \).
Since the lines have the same slope and pass through \((-4, 6)\), they must coincide.

19. Slope of line through \((-4, 6)\) and \((6, 10)\): \(\frac{6 - 10}{6 - 4} = \frac{-4}{2} = -2 \).
Slope of line through \((6, 10)\) and \((10, 0)\): \(\frac{10 - 0}{6 - 10} = \frac{10}{-4} = -\frac{5}{2} \).
Since the slopes are negative reciprocals, the lines are perpendicular.

20. Slope of line through \((-4, 2)\) and \((-1, 8)\): 2;
Slope of line through \((9, 4)\) and \((6, -2)\): 2;
Slope of line through \((-1, 8)\) and \((9, 4)\): \(-\frac{2}{5}\);
Slope of line through \((-4, 2)\) and \((6, -2)\): \(-\frac{2}{5}\);

21. Slope of line through \((0, -3)\) and \((-2, 3)\): \(\frac{-3 - 3}{0 - (-2)} = \frac{-6}{2} = -3 \)
Slope of line through \((7, 6)\) and \((9, 0)\): \(\frac{6 - 0}{7 - 9} = \frac{6}{-2} = -3 \)
Slope of line through \((-2, 3)\) and \((7, 6)\): \(\frac{3 - 6}{-2 - 7} = \frac{-3}{-9} = \frac{1}{3} \)
Slope of line through \((0, -3)\) and \((9, 0)\): \(\frac{-3 - 0}{0 - 9} = \frac{1}{3} \)
Since -3 and $\frac{1}{3}$ are negative reciprocals, adjacent sides are perpendicular and opposite sides are parallel.

22. Midpoint of line segment: \(\left(\frac{-2 + 8}{2}, \frac{-4 + 8}{2} \right) = (3, 2) \). Point: \((6, -4), m = \frac{-4 - 2}{6 - 3} = -2\)

23. Midpoint: \(\left(\frac{-3 + 9}{2}, \frac{-2 + 0}{2} \right) = (3, -1) \)

Slope of line through \((5, 6)\) and \((3, -1)\): \(\frac{6 - (-1)}{5 - 3} = \frac{7}{2} \)

24. Let \((x, y)\) be the other end of the diameter. Since the center is the midpoint, we get \(\frac{x}{2} + 4 = 1 \) and \(\frac{y - 3}{2} = 2 \); solving, \(x = -2, y = 7 \).

25. \(\tan \theta = \frac{\text{rise}}{\text{run}} = \frac{10.0 \text{ ft}}{160 \text{ ft}} = 0.0625 \)

26. \(\tan \theta = \frac{\text{rise}}{\text{run}} = \frac{2.5 \text{ m}}{19.0 \text{ m}} \approx 0.1316; \theta = 7.5^\circ \)

27. Slope of line through \((-1, -1)\) and \((3, -5)\): \(\frac{-1 - (-5)}{-1 - 3} = \frac{4}{-4} = -1 \)

Slope of line through \((x, 2)\) and \((4, -6)\): \(\frac{2 + 6}{x - 4} = \frac{8}{x - 4} \)

Since the two slopes must be equal, we have:
\[
\frac{8}{x - 4} = -1
\]
\[
8 = -x + 4 \quad \text{multiplying both sides by } x - 4
\]
\[
x = -4
\]

28. Slope of line segment \((2, -1)\) to \((-3, 2)\): \(\frac{-3}{5} \); Slope of other line segment: \(\frac{-2 + 7}{x - 4} \); so \(\frac{5}{x - 4} = \frac{5}{3} \) (negative reciprocals); solving, \(x = 7 \).

1.3 The Straight Line

1. Since \((x_1, y_1) = (-7, 2)\) and \(m = 1/2\), we get

\[
y - 2 = \frac{1}{2}(x + 7) \quad y - y_1 = m(x - x_1)
\]

\[
2y - 4 = x + 7 \quad \text{clearing fractions}
\]

\[
x - 2y + 11 = 0
\]

2. Since \((x_1, y_1) = (0, 3)\) and \(m = -4\), we get

\[
y - 3 = -4(x - 0) \quad y - y_1 = m(x - x_1)
\]

\[
4x + y - 3 = 0
\]

3. \(y - y_1 = m(x - x_1) \)

\[
y + 4 = 3(x - 3) \quad (x_1, y_1) = (3, -4); \ m = 3
\]

\[
y + 4 = 3x - 9
\]

\[
3x - y - 13 = 0
\]

4. By \((1,8), y = 2\).
5. \[y - y_1 = m(x - x_1) \]
 \[y - 0 = -\frac{1}{3}(x - 0) \quad (x_1, y_1) = (0, 0); \quad m = -1/3 \]
 \[3y = -x \]
 \[x + 3y = 0 \]

6. By (1.9), \(x = -3 \).

7. The line \(y = 1 = 0x + 1 \) has slope 0.
 \[y - y_1 = m(x - x_1) \]
 \[y - 0 = 0(x + 4) \quad (x_1, y_1) = (-4, 0); \quad m = 0 \]
 \[y = 0 \quad \text{x-axis} \]

8. First determine the slope: \(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 6}{-3 - 7} = \frac{2}{5} \)
 Let \((x_1, y_1) = (-3, 2)\) then
 \[y - 2 = \frac{2}{5}(x + 3) \]
 \[5y - 10 = 2x + 6 \quad \text{multiplying by 5} \]
 \[2x - 5y + 16 = 0 \]

9. First determine the slope using \[m = \frac{y_2 - y_1}{x_2 - x_1} \text{ to get } m = \frac{4 - (-6)}{-3 - 3} = \frac{10}{-6} = -\frac{5}{3}. \]
 Then let \((x_1, y_1) = (-3, 4)\) to get
 \[y - 4 = -\frac{5}{3}(x + 3) \]
 \[3y - 12 = -5x - 15 \quad \text{multiplying by 3} \]
 \[5x + 3y + 3 = 0 \]

10. \[m = \frac{6 - 3}{-4 - 2} = -\frac{1}{2} \]
 \[y - 3 = -\frac{1}{2}(x - 2) \quad (x_1, y_1) = (2, 3) \]
 \[2y - 6 = -x + 2 \quad \text{multiplying by 2} \]
 \[x + 2y - 8 = 0 \]

11. \[m = \frac{-4 - 0}{9 - 5} = -1 \]
 \[y - 0 = -1(x - 5) \quad \text{choosing } (x_1, y_1) = (5, 0) \]
 \[x + y - 5 = 0 \]

12. \[m = \frac{5 - 7}{3 - 1} = \frac{1}{2} \]
 \[y - 5 = \frac{1}{2}(x + 3) \quad (x_1, y_1) = (-3, 5) \]
 \[2y - 10 = x + 3 \quad \text{multiplying by 2} \]
 \[x - 2y + 13 = 0 \]

13. \[6x + 2y = 5 \]
 \[2y = -6x + 5 \]
 \[y = -3x + \frac{5}{2} \quad y = mx + b \]
 \[m = -3, \quad y\text{-intercept } = \frac{5}{2}; \text{ see graph in answer section of book}. \]

14. Solving for \(y \), we get \(y = x - 1 \). Slope:1, \(y\)-intercept :\(-1\)

15. Since \(2x = 3y \), \(y = \frac{2}{3}x \). From the form \(y = mx + b \), \(m = \frac{2}{3} \) and \(b = 0 \). The line passes through the origin and has slope \(\frac{2}{3} \). See graph in answer section of book.

16. From \(y = -4x + 12 \), we get \(m = -4 \) and \(b = 12 \).
17. \(2y - 7 = 0\)
 \[y = 0x + \frac{7}{2}\]
 \[y = mx + b\]
 \[m = 0, \text{ y-intercept} = \frac{7}{2}; \text{ see graph in answer section of book.}\]

18. Solving for \(y\):
 \[y = \frac{1}{4}x - \frac{3}{2}\]
 slope: \(\frac{1}{4}\); y-intercept: \(-\frac{3}{2}\)

19. \(2x - 3y = 1\)
 \[4x - 6y + 3 = 0\]
 \[-3y = -2x + 1\]
 \[-6y = -4x - 3\]
 \[y = \frac{2}{3}x - \frac{1}{3}\]
 \[y = \frac{4}{9}x + \frac{3}{9}\]
 From the form \(y = mx + b\), \(m = \frac{2}{3}\) in both cases, so that the lines are parallel.

20. \(2x + 4y + 3 = 0\)
 \[y - 2x = 2\]
 \[y = -\frac{1}{2}x - \frac{3}{4}\]
 slope: \(-\frac{1}{2}\)
 Answer: The lines are perpendicular.

21. \(3x - 4y = 1\)
 \[3y - 4x = 3\]
 \[-4y = -3x + 1\]
 \[3y = 4x + 3\]
 \[y = \frac{3}{4}x - \frac{4}{5}\]
 \[y = \frac{9}{15}x + \frac{4}{15}\]
 The lines are neither parallel nor perpendicular.

22. \(7x - 10y = 6\)
 \[y - 4 = 0\]
 \[y = \frac{7}{10}x - \frac{3}{5}\]
 slope: \(\frac{7}{10}\)
 Answer: neither

23. \(x + 3y = 5\)
 \[y - 3x - 2 = 0\]
 \[3y = -x + 5\]
 \[y = -\frac{1}{3}x + \frac{5}{3}\]
 The slopes are \(-\frac{1}{3}\) and 3, respectively. Since the slopes are negative reciprocals, the lines are perpendicular.

24. \(2x + 5y = 2\)
 \[6x + 15y = 1\]
 \[y = -\frac{2}{5}x + \frac{2}{5}\]
 \[y = -\frac{2}{5}x + \frac{1}{15}\]
 Slope is \(-\frac{2}{5}\) in each case; the lines are parallel.

25. \(3x - 5y = 6\)
 \[9x - 15y = 4\]
 \[5y = -3x + 6\]
 \[-15y = -9x + 4\]
 \[y = \frac{3}{5}x - \frac{6}{5}\]
 \[y = \frac{-9}{15}x + \frac{4}{15}\]
 From the form \(y = mx + b\), the slope \(m\) is \(\frac{3}{5}\) in both cases; so the lines are parallel.

26. \(4y - 3x + 6 = 0\)
 \[6x - 8y + 1 = 0\]
 \[4y = 3x - 6\]
 \[-8y = -6x - 1\]
 \[y = \frac{3}{4}x - \frac{3}{2}\]
 \[y = -\frac{6}{8}x + \frac{1}{8}\]
 \[y = \frac{3}{4}x + \frac{1}{8}\]
 slope: \(\frac{3}{4}\)
 Answer: the lines are parallel.
27. \[2y - 3x = 6 \quad 6y + 4x = 5 \]
\[2y = 3x + 6 \quad 6y = -4x + 5 \]
\[y = \frac{3}{2}x + 3 \quad y = -\frac{4}{6}x + \frac{5}{6} \]
\[y = -\frac{2}{3}x - \frac{5}{6} \]

The respective slopes are \(\frac{3}{2} \) and \(-\frac{2}{3} \). Since the slopes are negative reciprocals, the lines are perpendicular.

28. \[x - 4y - 2 = 0 \quad 2y + 8x - 7 = 0 \]
\[-4y = -x + 2 \quad 2y = -8x + 7 \]
\[y = \frac{1}{4}x - \frac{1}{2} \quad y = -4x + \frac{7}{2} \]

The respective slopes are \(\frac{1}{4} \) and \(-4 \). Since the slopes are negative reciprocals, the lines are perpendicular.

29. \[3y - 2x - 12 = 0 \quad 2x + 3y - 4 = 0 \]
\[3y = 2x + 12 \quad 3y = -2x + 4 \]
\[y = \frac{2}{3}x + 4 \quad y = -\frac{2}{3}x + \frac{4}{3} \]

The lines are neither parallel nor perpendicular.

30. \[3x + 4y - 4 = 0 \quad 6x - 8y - 3 = 0 \]
\[4y = -3x + 4 \quad -8y = -6x + 3 \]
\[y = -\frac{3}{4}x + 1 \quad y = \frac{3}{4}x - \frac{3}{8} \]

The lines are neither parallel nor perpendicular.

31. \(3x + 4y = 5 \) (given line)
\[y = -\frac{3}{4}x + \frac{5}{4} \] (slope \(= -\frac{3}{4} \))
\[y - y_1 = m(x - x_1) \] (point-slope form)
\[y - 1 = -\frac{3}{4}(x + 2) \] (point: \((-2, 1)\))
\[4y - 4 = -3x - 6 \]
\[3x + 4y + 2 = 0 \]

32. The given line can be written \(y = -\frac{3}{4}x + \frac{5}{4} \). So the slope is \(-\frac{3}{4} \). Slope of perpendicular: \(\frac{4}{3} \).
\[y - 1 = \frac{4}{3}(x + 2) \quad y - y_1 = m(x - x_1) \]
\[3y - 3 = 4x + 8 \]
\[4x - 3y + 11 = 0 \]

33. To find the coordinates of the point of intersection, solve the equations simultaneously:
\[2x - 4y = 1 \]
\[3x + 4y = 4 \]
\[5x = 5 \quad \text{adding} \]
\[x = 1 \]

From the second equation, \(3(1) + 4y = 4 \), and \(y = \frac{1}{4} \). So the point of intersection is \((1, \frac{1}{4})\).
From the equation \(5x + 7y + 3 = 0 \), we get
\[7y = -5x - 3 \]
\[y = -\frac{5}{7}x - \frac{3}{7} \] (slope \(= -\frac{5}{7} \))
Thus \((x_1, y_1) = (1, \frac{1}{4})\) and \(m = -\frac{5}{7}\). The desired line is \(y - \frac{1}{4} = -\frac{5}{7}(x - 1)\). To clear fractions, we multiply both sides by 28:

\[
\begin{align*}
28y - 7 & = -20(x - 1) \\
28y - 7 & = -20x + 20 \\
20x + 28y - 27 & = 0
\end{align*}
\]

34. The first two lines are perpendicular: \(y = \frac{1}{3}x + 1\) and \(y = -3x - \frac{25}{4}\).

35. See graph in answer section of book.

36. \(F = 3x\), slope = 3, passing through the origin.

37. From \(F = kx\), we get \(3 = k \cdot \frac{1}{2}\). Thus \(k = 6\) and \(F = 6x\).

38. \(y\)-intercept: initial value; \(t\)-intercept: the year the value becomes zero

39. \[
\begin{align*}
F & = mC + b \\
212 & = m(100) + b & F = 212, C = 100 \\
32 & = m(0) + b & F = 32, C = 0 \\
\hline
b & = 32 & \text{second equation} \\
212 & = m(100) + 32 & \text{substituting into first equation}
\end{align*}
\]

\[
m = \frac{180}{100} = \frac{9}{5}
\]

Solution: \(F = \frac{9}{5}C + 32\)

40. \(C = 1800 + 500t\)

41. \[
\begin{align*}
R & = aT + b \\
51 & = a \cdot 100 + b & R = 51, T = 100 \\
54 & = a \cdot 400 + b & R = 54, T = 400 \\
-3 & = -300a & \text{subtracting} \\
a & = \frac{-3}{-300} = 0.01
\end{align*}
\]

From the first equation, \(51 = a \cdot 100 + b\), we get

\[
\begin{align*}
51 & = (0.01)(100) + b & (a = 0.01) \\
b & = 50
\end{align*}
\]

So the formula \(R = aT + b\) becomes \(R = 0.01T + 50\).

42. \(P = kx\); let \(P = 187.2\) lb and \(x = 3.0\) ft. Then

\[
187.2 = k(3.0) \quad \text{and} \quad k = \frac{187.2}{3.0} = 62.4
\]

So the relationship is \(P = 62.4x\).
1.4 Curve Sketching

In the answers below, the intercepts are given first, followed by symmetry, asymptotes, and extent.

2. \(y = 2, \ x = \frac{1}{2}; \) none; none; all \(x \)

\[\text{Intercepts. If } x = 0, \text{ then } y = -9. \text{ If } y = 0, \text{ then} \]
\[0 = x^2 - 9 \]
\[x^2 = 9 \quad \text{solving for } x \]
\[x = \pm 3 \quad x = 3 \text{ and } x = -3. \]
Symmetry. If \(x \) is replaced by \(-x\), we get \(y = (-x)^2 - 9 \), which reduces to the given equation \(y = x^2 - 9 \). The graph is therefore symmetric with respect to the \(y \)-axis. There is no other type of symmetry.
Asymptotes. Since the equation is not in the form of a quotient with a variable in the denominator, there are no asymptotes.
Extent. \(y \) is defined for all \(x \).
Graph.

4. \(y = 1; \ y\)-axis; none; all \(x \)

\[\text{Intercepts. If } x = 0, \text{ then } y = 1. \text{ If } y = 0, \text{ then} \]
\[0 = 1 - x^2 \]
\[x^2 = 1 \quad \text{solving for } x \]
\[x = \pm 1 \quad x = 1 \text{ and } x = -1. \]
Symmetry. If x is replaced by $-x$, we get $y = 1 - (-x)^2$, which reduces to the given equation $y = 1 - x^2$. The graph is therefore symmetric with respect to the y-axis. There is no other type of symmetry.

Asymptotes. Since the equation is not in the form of a quotient with a variable in the denominator, there are no asymptotes.

Extent. y is defined for all x.

Graph.

\[y = 1 - x^2. \]

6. $y = 5, x = \pm \sqrt{5}$; y-axis; none; all x

7. Intercepts. If $x = 0$, then $y = 0$, and if $y = 0$, then $x = 0$. So the only intercept is the origin.

Symmetry. If we replace x by $-x$, we get $y^2 = -x$, which does not reduce to the given equation. So there is no symmetry with respect to the y-axis.

If y is replaced by $-y$, we get $(-y)^2 = x$, which reduces to $y^2 = x$, the given equation. It follows that the graph is symmetric with respect to the x-axis.

To check for symmetry with respect to the origin, we replace x by $-x$ and y by $-y$: $(-y)^2 = -x$. The resulting equation, $y^2 = -x$, does not reduce to the given equation. So there is no symmetry with respect to the origin.

Asymptotes. Since the equation is not in the form of a fraction with a variable in the denominator, there are no asymptotes.

Extent. Solving the equation for y in terms of x, we get

\[y = \pm \sqrt{x}. \]

Note that to avoid imaginary values, x cannot be negative. It follows that the extent is $x \geq 0$.

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

Graph.

8. origin; x-axis; none; $x \geq 0$

9. Intercepts. If $x = 0$, then $y = \pm 1$. If $y = 0$, then $x = -1$.

Symmetry. If we replace x by $-x$ we get $y^2 = -x + 1$, which does not reduce to the given equation. So there is no symmetry with respect to the y-axis.

If y is replaced by $-y$, we get $(-y)^2 = x + 1$, which reduces to $y^2 = x + 1$, the given equation.

It follows that the graph is symmetric with respect to the x-axis.

The graph is not symmetric with respect to the origin.

Asymptotes. Since the equation is not in the form of a fraction with a variable in the denominator, there are no asymptotes.

Extent. Solving the equation for y, we get $y = \pm \sqrt{x + 1}$. To avoid imaginary values, we must have $x + 1 \geq 0$ or $x \geq -1$. Therefore the extent is $x \geq -1$.

Graph.

10. $y = \pm \sqrt{2}$; $x = 2$; x-axis; none; $x \leq 2$
11. **Intercepts.** If \(x = 0 \), then \(y = (0 - 3)(0 + 5) = -15 \). If \(y = 0 \), then

\[
0 = (x - 3)(x + 5)
\]

\[
x - 3 = 0 \quad x + 5 = 0
\]

\[
x = 3 \quad x = -5.
\]

Symmetry. If \(x \) is replaced by \(-x\), we get \(y = (-x - 3)(-x + 5) \), which does not reduce to the given equation. So there is no symmetry with respect to the \(y \)-axis. Similarly, there is no other type of symmetry.

Asymptotes. Since the equation is not in the form of a quotient with a variable in the denominator, there are no asymptotes.

Extent. \(y \) is defined for all \(x \).

Graph.

![Graph of y = (x-3)(x+5)](image)

(0, -15)

12. \(y = -24; x = -6, 4; \) none; none; all \(x \)

![Graph of y = -24](image)

13. **Intercepts.** If \(x = 0 \), then \(y = 0 \). If \(y = 0 \), then

\[
0 = x(x + 3)(x - 2)
\]

\[
x = 0, -3, 2.
\]

Symmetry. If \(x \) is replaced by \(-x\), we get \(y = -x(-x + 3)(-x - 2) \), which does not reduce to the given equation. So the graph is not symmetric with respect to the \(y \)-axis. There is no other type of symmetry.

Asymptotes. Since the equation is not in the form of a quotient with a variable in the denominator, there are no asymptotes.

Extent. \(y \) is defined for all \(x \).
CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

14. \(y = 0 \): \(x = 0, 1, 4 \); none; none; all \(x \)

15. Intercepts. If \(x = 0 \), \(y = 0 \); if \(y = 0 \), then

\[
x(x - 1)(x - 2)^2 = 0
\]

\[
x = 0, 1, 2.
\]

Symmetry. If \(x \) is replaced by \(-x\), we get \(y = -x(-x - 1)(-x - 2)^2 \), which does not reduce to the given equation. So there is no symmetry with respect to the \(y \)-axis. Similarly, there is no other type of symmetry.

Asymptotes. None (the equation does not have the form of a fraction).

Extent. \(y \) is defined for all \(x \).

16. \(y = 0 \): \(x = -2, 0, 3 \); none; none; all \(x \)
17. **Intercepts.** If \(x = 0 \), then \(y = 0 \). If \(y = 0 \), then

\[
0 = x(x - 1)^2(x - 2)
\]

\(x = 0, 1, 2 \).

Symmetry. If \(x \) is replaced with \(-x\), we get \(y = -x(-x - 1)^2(-x - 2) \), which does not reduce to the given equation. Therefore there is no symmetry with respect to the \(y \)-axis. There is no other type of symmetry.

Asymptotes. None (the equation does not have the form of a fraction).

Extent. \(y \) is defined for all \(x \).

Graph.

\[
\begin{array}{c}
\text{Graph} \\
\end{array}
\]

18. **Intercepts.** If \(x = 0 \), \(y = -2, 0, 3 \); none; none; all \(x \)

\[
\begin{array}{c}
\text{Graph} \\
\end{array}
\]

19. **Intercepts.** If \(x = 0 \), \(y = 1 \); if \(y = 0 \), we have

\[
0 = \frac{2}{x + 2}.
\]

This equation has no solution.

Symmetry. Replacing \(x \) by \(-x\), we get

\[
y = \frac{2}{-x + 2}
\]

which does not reduce to the given equation. So there is no symmetry with respect to the \(y \)-axis. Similarly, there is no other type of symmetry.

Asymptotes. Setting the denominator equal to 0, we get

\[
x + 2 = 0 \text{ or } x = -2.
\]

It follows that \(x = -2 \) is a vertical asymptote. Also, as \(x \) gets large, \(y \) approaches 0. So the \(x \)-axis is a horizontal asymptote.

Extent. To avoid division by 0, \(x \) cannot be equal to \(-2 \). So the extent is all \(x \) except \(x = -2 \).
20. $y = -1$; none; $x = 3$; $y = 0$; $x \neq 3$

21. **Intercepts.** If $x = 0$, then $y = 2$. If $y = 0$, then

$$\frac{2}{(x-1)^2} = 0.$$

This equation has no solution.

Symmetry. Replacing x by $-x$, we get

$$y = \frac{2}{(-x-1)^2}$$

which does not reduce to the given equation. There are no other types of symmetry.

Asymptotes. Setting the denominator equal to 0 gives

$$(x-1)^2 = 0 \text{ or } x = 1.$$

It follows that $x = 1$ is a vertical asymptote. Also, as x gets large, y approaches 0. So the x-axis is a horizontal asymptote.

Extent. To avoid division by 0, x cannot be equal to 1. So the extent is the set of all x except $x = 1$.

Graph.
22. \(y = -\frac{1}{4}; \) none; none; \(x = -2; y = 0; x \neq -2 \)

\[
\begin{array}{c}
\text{y} \\
\hline
-6 & -2 & 0 & 2 \\
\hline
\text{x}
\end{array}
\]

23. **Intercepts.** If \(x = 0 \), then \(y = 0 \). If \(y = 0 \), then

\[
0 = \frac{x^2}{x - 1}.
\]

The only solution is \(x = 0 \).

Symmetry. Replacing \(x \) by \(-x\) yields

\[
y = \frac{(-x)^2}{-x - 1} = \frac{x^2}{-x - 1}
\]

which is not the same as the given equation. So the graph is not symmetric with respect to the \(y \)-axis. Replacing \(y \) by \(-y\), we have

\[
-y = \frac{x^2}{x - 1}
\]

which does not reduce to the given equation. So the graph is not symmetric with respect to the \(x \)-axis.

Similarly, there is no symmetry with respect to the origin.

Asymptotes. Setting the denominator equal to 0, we get \(x - 1 = 0 \), or \(x = 1 \). So \(x = 1 \) is a vertical asymptote. There are no horizontal asymptotes.

(Observation: for very large \(x \) the 1 in the denominator becomes insignificant. So the graph gets ever closer to \(y = \frac{x^2}{x} = x \); the line \(y = x \) is a slant asymptote.)

Extent. To avoid division by 0, \(x \) cannot be equal to 1. So the extent is all \(x \) except \(x = 1 \).

Graph.

24. \(y = 0; x = 0; \) none; \(x = -2; y = 1; x \neq -2 \)

\[
\begin{array}{c}
\text{y} \\
\hline
-5 & -3 & 1 & 2 \\
\hline
\text{x}
\end{array}
\]
25. **Intercepts.** If \(x = 0 \), then \(y = -1/2 \). If \(y = 0 \), then

\[
0 = \frac{x + 1}{(x - 1)(x + 2)}.
\]

The only solution is \(x = -1 \).

Symmetry. Replacing \(x \) by \(-x\) yields

\[
y = \frac{-x + 1}{(-x - 1)(-x + 2)}
\]

which is not the same as the given equation. There are no types of symmetry.

Asymptotes. Setting the denominator equal to 0, we get \((x - 1)(x + 2) = 0\). So \(x = 1 \) and \(x = -2 \) are the vertical asymptotes. As \(x \) gets large, \(y \) approaches 0, so the \(x \)-axis is a horizontal asymptote.

Extent. To avoid division by 0, the extent is all \(x \) except \(x = 1 \) and \(x = -2 \).

Graph.

![Graph](image)

26. \(y = 0, x = 1, 0; \) none; \(x = -1, 2, y = 1; x \neq -1, 2 \)

![Graph](image)

27. **Intercepts.** If \(x = 0 \), then \(y = 4 \). If \(y = 0 \), then

\[
\frac{x^2 - 4}{x^2 - 1} = 0
\]

\[
x^2 - 4 = 0 \quad \text{multiplying by } x^2 - 1
\]

\[
x = \pm 2. \quad \text{solution}
\]

Symmetry. Replacing \(x \) by \(-x\) reduces to the given equation. So there is symmetry with respect to the \(y \)-axis. There is no other type of symmetry.

Asymptotes. Vertical: setting the denominator equal to 0, we have

\[
x^2 - 1 = 0 \text{ or } x = \pm 1.
\]

Horizontal: dividing numerator and denominator by \(x^2 \), the equation becomes

\[
y = \frac{1 - \frac{4}{x}}{1 - \frac{1}{x}}
\]
1.4. CURVE SKETCHING

As x gets large, y approaches 1. So $y = 1$ is a horizontal asymptote.

Extent. All x except $x = \pm 1$ (to avoid division by 0).

Graph.

28. $y = \frac{1}{x}, x = \pm 1; y$-axis; $x = \pm 2, y = 1; x \neq \pm 2$

29. Intercepts. If $x = 0$, then $y^2 = \frac{-4}{1} = 4$, or $y = \pm 2$. If $y = 0$, then

$$0 = \frac{x^2 - 4}{x^2 - 1}$$

which is possible only if $x^2 - 4 = 0$, or $x = \pm 2$.

Symmetry. The even powers on x and y tell us that if x is replaced by $-x$ and y is replaced by $-y$, the resulting equation will reduce to the given equation. The graph is therefore symmetric with respect to both axes and the origin.

Asymptotes. Vertical: setting the denominator equal to 0, we get

$$x^2 - 1 = 0 \text{ or } x = \pm 1.$$

Horizontal: dividing numerator and denominator by x^2, we get

$$y^2 = \frac{1 - \frac{4}{x^2}}{1 - \frac{1}{x^2}}.$$

The right side approaches 1 as x gets large. Thus y^2 approaches 1, so that $y = \pm 1$ are the horizontal asymptotes.
CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

Extended. From

\[y = \pm \sqrt{\frac{x^2 - 4}{x^2 - 1}} \]

we conclude that

\[\frac{x^2 - 4}{x^2 - 1} = \frac{(x - 2)(x + 2)}{(x - 1)(x + 1)} \geq 0. \]

Since the signs change only at \(x = 2, -2, 1, \) and \(-1\), we need to use arbitrary "test values" between these points. The results are summarized in the following chart.

<table>
<thead>
<tr>
<th>test values</th>
<th>(x - 2)</th>
<th>(x - 1)</th>
<th>(x + 1)</th>
<th>(x + 2)</th>
<th>(\frac{(x - 2)(x + 2)}{(x - 1)(x + 1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x > 2)</td>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(1 < x < 2)</td>
<td>(3/2)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(-1 < x < 1)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(-2 < x < -1)</td>
<td>(-3/2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(x < -2)</td>
<td>-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Note that the fraction is positive only when \(x > 2, -1 < x < 1 \) and \(x < -2 \). Since \(y = 0 \) when \(x = \pm 2 \), the extent is \(x \geq 2, -1 < x < 1, x \leq -2 \).

Graph.

\[y = \pm \frac{1}{x} \quad x = \pm 1; \text{ both axes; } x = \pm 2, y = \pm 1; x < -2, -1 \leq x \leq 1, x > 2 \]

30. \(y = \pm \frac{1}{x} \quad x = \pm 1; \text{ both axes; } x = \pm 2, y = \pm 1; x < -2, -1 \leq x \leq 1, x > 2 \)

31. Intercepts. If \(x = 0 \), \(y^2 = (-3)(5) = -15 \), or \(y = \pm \sqrt{15} \), which is a pure imaginary number. If \(y = 0 \), \(\frac{(x - 3)(x + 5)}{x} = 0 \)

\[x = 3, -5. \]

Symmetry. Replacing \(y \) by \(-y \), we get \((-y)^2 = (x - 3)(x + 5)\), which reduces to the given equation. Hence the graph is symmetric with respect to the \(x \)-axis.

Asymptotes. None (no fractions).

Extent. From \(y = \pm \sqrt{(x - 3)(x + 5)} \), we conclude that \((x - 3)(x + 5) \geq 0 \). If \(x \geq 3 \), \((x - 3)(x + 5) \geq 0 \). If \(x \leq -5 \), \((x - 3)(x + 5) \geq 0 \), since both factors are negative (or zero).

If \(-5 < x < 3 \), \((x - 3)(x + 5) < 0 \). [For example, if \(x = 0 \), we get \((-3)(5) = -15 \).] These observations are summarized in the following chart.
21

1.4. CURVE SKETCHING

<table>
<thead>
<tr>
<th>test values</th>
<th>$x - 3$</th>
<th>$x + 5$</th>
<th>$(x - 3)(x + 5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x > 3$</td>
<td>4</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>$-5 < x < 3$</td>
<td>0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>$x < -5$</td>
<td>-6</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Extent: $x \leq -5$, $x \geq 3$

Graph.

32. $y = 0$, $x = 0$; x-axis; $x = -2$, $y = \pm 1$; $x < -2$, $x \geq 0$

33. Intercepts. If $x = 0$, $y = 0$; if $y = 0$, $x = 0$.

Symmetry. Replacing y by $-y$ leaves the equation unchanged. So there is symmetry with respect to the x-axis. There is no other type of symmetry.

Asymptotes. Vertical: setting the denominator equal to 0, we get

$$(x - 3)(x - 2) = 0$$

or $x = 3, 2$.

Horizontal: as x gets large, y approaches 0 (x-axis).

Extent. From

$$y = \pm \sqrt{\frac{x}{(x - 3)(x - 2)}}$$

we conclude that

$$\frac{x}{(x - 3)(x - 3)} \geq 0.$$

Since signs change only at $x = 0, 2$ and 3, we need to use “test values” between these points.

The results are summarized in the following chart.

<table>
<thead>
<tr>
<th>test values</th>
<th>x</th>
<th>$x - 2$</th>
<th>$x - 3$</th>
<th>$\frac{x}{(x - 3)(x - 2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < 0$</td>
<td>-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$0 < x < 2$</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$2 < x < 3$</td>
<td>5/2</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>$x > 3$</td>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

So the inequality is satisfied for $0 < x < 2$ and $x > 3$. In addition, $y = 0$ when $x = 0$.

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
So the extent is $0 \leq x < 2$ and $x > 3$.

Graph.

34. $x = -1$; x-axis; $x = -2$, 1, $y = 0$; $-2 < x \leq -1$, $x > 1$

35. $C = \frac{10^{-2}C_1}{C_1 + 10^{-2}}$, $C_1 \geq 0$

The only intercept is the origin. Dividing numerator and denominator by C_1, the equation becomes

$$C = \frac{10^{-2}}{1 + 10^{-2}/C_1}.$$

As C_1 gets large, C approaches 10^{-2}; so $C = 10^{-2}$ is a horizontal asymptote.

See graph in answer section of book.

37. Intercepts. If $t = 0$, $S = 0$; if $S = 0$, we get

$$0 = 60t - 5t^2$$

or $t = 0, 12$.

Symmetry. None.

Asymptotes. None.

Extent. $t \geq 0$ by assumption.

Graph. See graph in answer section of book.

38.

39. Extent $L \geq 0$.

See graph in answer section of book.
1.5 Curves with Graphing Utilities

Graphs are from the answer section of the book.

1. If \(y = 0 \), then

\[x^2(x - 1)(x - 2) = 0. \]

Setting each factor equal to 0, we get

\[x = 0, 1, 2. \]
4. $-2, -1, 0, 1$

\[[-3, 3] \text{ by } [-0.5, 0.5] \]

5. \[x^4 - 2x^3 = 0 \]
 \[x^3(x - 2) = 0 \]
 \[x = 0, 2 \]

\[[-1, 3] \text{ by } [-2, 2] \]

6. \[\pm \frac{\sqrt{6}}{2} \]

\[[-2, 2] \text{ by } [-15, 15] \]

8. \[0, \frac{1}{2} \]

\[[-1, 1] \text{ by } [-0.2, 0.2] \]
9. Domain: \(x \geq 0 \) (to avoid imaginary values).
 Vertical asymptotes: None. (The denominator is always positive, that is, \(1 + \sqrt{x} \neq 0 \).)

10. \(x = -1, x > -1 \)

12. \(x = 1, x \geq 0 \)

13. To find the vertical asymptotes, we set the denominator equal to 0:
 \[
 2x^2 - 3 = 0 \\
 2x^2 = 3 \\
 x^2 = \frac{3}{2} \\
 x = \pm \sqrt{\frac{3}{2}} \\
 \]
 Domain: \(y \) is defined for all \(x \) except \(x = \pm \sqrt{\frac{3}{2}} \).
14. \[x = \pm \frac{\sqrt{10}}{2}, x \neq \pm \frac{\sqrt{10}}{2} \]

16. \[x = 0, x \geq -1 \]

17. See graph in answer section of book.

18. \((-0.65, 4.36)\)
1.7 The Circle

1. Since \((h, k) = (0, 0)\) and \(r = 4\), we get from the form

\[(x - h)^2 + (y - k)^2 = r^2\]

the equation

\[x^2 + y^2 = 16.\]

2. Since \((h, k) = (0, 0)\) and \(r = 8\), we get from the form \((x - h)^2 + (y - k)^2 = r^2\) the equation \(x^2 + y^2 = 64\).

3. The radius of the circle is the distance from the origin to \((-6, 8)\). Hence

\[r^2 = (0 + 6)^2 + (0 - 8)^2 = 100.\]

From the standard form of the equation of the circle we get

\[(x - 0)^2 + (y - 0)^2 = 100 \quad \text{center: } (0, 0)\]

\[x^2 + y^2 = 100.\]

4. The radius of the circle is the distance from the origin to the point \((1, -4)\). Hence

\[r^2 = (0 - 1)^2 + (0 + 4)^2 = 17\]

Equation: \(x^2 + y^2 = 17\), \((h, k) = (0, 0)\)

5. \[(x - h)^2 + (y - k)^2 = r^2\]

\[(x + 2)^2 + (y - 5)^2 = 1^2\]

\[x^2 + y^2 + 4x - 10y + 28 = 0\]
6. \((x-h)^2 + (y-k)^2 = r^2\)
 \((x-2)^2 + (y+3)^2 = (\sqrt{2})^2\)
 \(x^2 - 4x + 4 + y^2 + 6y + 9 = 2\)
 \(x^2 + y^2 - 4x + 6y + 11 = 0\)

7. The radius is the distance from \((-1, -4)\) to the origin:

 \[r^2 = (-1 - 0)^2 + (-4 - 0)^2 = 1 + 16 = 17.\]

 Hence,
 \[(x+1)^2 + (y+4)^2 = 17\]
 \[(x-h)^2 + (y-k)^2 = r^2\]
 \[x^2 + 2x + 1 + y^2 + 8y + 16 = 17\]
 \[x^2 + y^2 + 2x + 8y = 0.\]

8. The radius is the distance from the center to a point on the circle. Thus

 \[r^2 = (5 - 3)^2 + (10 - 4)^2 = 40\]
 \[(x - 3)^2 + (y - 4)^2 = 40\]
 \[x^2 - 6x + 9 + y^2 - 8y + 16 = 40\]
 \[x^2 + y^2 - 6x - 8y - 15 = 0\]

9. Diameter: distance from \((-2, -6)\) to \((1, 5)\). Hence

 \[r = \frac{1}{2}\sqrt{(-2 - 1)^2 + (-6 - 5)^2} = \frac{1}{2}\sqrt{9 + 121} = \frac{1}{2}\sqrt{130}\]

 and thus,

 \[r^2 = \frac{1}{4}(130) = \frac{65}{2}.\]

 Center: midpoint of the line segment, whose coordinates are

 \[\left(-\frac{2 + 1}{2}, -\frac{6 + 5}{2}\right) = \left(-\frac{1}{2}, -\frac{11}{2}\right).\]

 Thus

 \[(x + \frac{1}{2})^2 + (y + \frac{1}{2})^2 = \frac{65}{2}\]
 \[x^2 + x + \frac{1}{4} + y^2 + y + \frac{1}{4} = \frac{65}{2}\]
 \[x^2 + y^2 + x + y - 32 = 0.\]

10. Distance from \((-1, 2)\) to the y-axis: 1

 \[(x + 1)^2 + (y - 2)^2 = 1\]

11. Since \(r = 5\), we get

 \[(x - 4)^2 + (y + 5)^2 = 25\] or \[x^2 + y^2 - 8x + 10y + 16 = 0\]
12. Distance to the line \(y = 1 \):
\[
(x - 3)^2 + (y - 4)^2 = 9
\]

13. From the diagram, \(r^2 = 1^2 + 1^2 = 2 \); so \(x^2 + y^2 = 2 \).

14. Since the circle is tangent to the \(y \)-axis with radius 2, \(h = 2 \) or \(h = -2 \). The equation \(y = \frac{3}{2}x \) yields two possibilities for the center: \((2, 3) \) and \((-2, -3) \). Thus

\[
(x - 2)^2 + (y - 3)^2 = 2^2 \quad \text{and} \quad (x + 2)^2 + (y + 3)^2 = 2^2
\]

or

\[
x^2 + y^2 - 4x - 6y + 9 = 0 \quad \text{and} \quad x^2 + y^2 + 4x + 6y + 9 = 0
\]

15. \(x^2 + y^2 - 2x - 2y - 2 = 0 \)

\[
x^2 - 2x + y^2 - 2y = 2
\]

We now add to each side the square of one-half the coefficient of \(x \):

\[
\left[\frac{1}{2}(-2) \right]^2 = 1
\]

\[
x^2 - 2x + 1 + y^2 - 2y = 2 + 1.
\]

Similarly, we add 1 (the square of one-half the coefficient of \(y \)):

\[
(x - 1)^2 + (y - 1)^2 = 4.
\]

Center: \((h, k) = (1, 1)\); radius: \(\sqrt{4} = 2\).

16. \(x^2 + y^2 - 2x - 4y + 4 = 0 \)

\[
x^2 - 2x + y^2 - 4y = -4
\]

We now add to each side the square of one-half the coefficient of \(x \): \(\left[\frac{1}{2}(-2) \right]^2 = 1 \):

\[
x^2 - 2x + 1 + y^2 - 4y = -4 + 1
\]

Similarly, we add to each side the square of one-half the coefficient of \(y \): \(\left[\frac{1}{2}(-4) \right]^2 = 4 \)

\[
x^2 - 2x + 1 + y^2 - 4y + 4 = -4 + 1 + 4
\]

\((x - 1)^2 + (y - 2)^2 = 1\); Center: \((h, k) = (1, 2)\); radius: \(\sqrt{1} = 1\).

17. \(x^2 + y^2 + 4x - 8y + 4 = 0 \)

\[
x^2 + 4x + y^2 - 8y = -4
\]

Since

\[
\left(\frac{1}{2} \cdot 4 \right)^2 = 4 \quad \text{and} \quad \left[\frac{1}{2}(-8) \right]^2 = 16
\]

we get

\[
(x^2 + 4x + 4) + (y^2 - 8y + 16) = -4 + 4 + 16
\]

\[
(x + 2)^2 + (y - 4)^2 = 16.
\]

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The equation can be written

\[(x - (-2))^2 + (y - 4)^2 = 4^2. \]

It follows that

\((h, k) = (-2, 4)\) and \(r = 4\).

18. \(x^2 + y^2 + 2x + 6y + 3 = 0\)

\(x^2 + 2x + y^2 + 6y = -3\)

Observe that \(\left[\frac{1}{2}(2)\right]^2 = 1\) and \(\left[\frac{1}{2}(6)\right]^2 = 9\). Adding 1 and 9 to each side, we get

\[x^2 + 2x + 1 + y^2 + 6y + 9 = -3 + 1 + 9 \]

or

\[(x + 1)^2 + (y + 3)^2 = 7 \]

Center: \((-1, -3)\); radius: \(\sqrt{7}\).

19. \(x^2 + y^2 - 4x + y + \frac{9}{4} = 0\)

\(x^2 - 4x + y^2 + y = -\frac{9}{4}\)

We add to each side the square of one-half the coefficient of \(x\):

\[\left[\frac{1}{2}(-4)\right]^2 = 4 \]. This gives

\[x^2 - 4x + 4 + y^2 + y = -\frac{9}{4} + 4 \]

Similarly, we add the square of one-half the coefficient of \(y\):

\[\left[\frac{1}{2}(1)\right]^2 = \frac{1}{4} \]. This gives

\[x^2 - 4x + 4 + y^2 + y + \frac{1}{4} = -\frac{9}{4} + 4 + \frac{1}{4} \]

\[(x - 2)^2 + (y + \frac{1}{2})^2 = -\frac{8}{4} + 4 \]

\[(x - 2)^2 + (y + \frac{1}{2})^2 = 2 \]

Center: \((2, -\frac{1}{2})\); radius: \(\sqrt{2}\).

20. \(x^2 + y^2 + x - 4y + \frac{5}{4} = 0\)

\(x^2 + x + y^2 - 4y = -\frac{5}{4}\)

Add to each side: \(\left[\frac{1}{2}(1)\right]^2 = \frac{1}{4}\) and \(\left[\frac{1}{2}(-4)\right]^2 = 4\)

\[x^2 + x + \frac{1}{4} + y^2 - 4y + 4 = -\frac{5}{4} + \frac{1}{4} + 4 \]

\[(x + \frac{1}{2})^2 + (y - 2)^2 = 3 \]; Center: \((-\frac{1}{2}, 2)\); radius: \(\sqrt{3}\).

21. \(4x^2 + 4y^2 - 8x - 12y + 9 = 0\)

\(x^2 + y^2 - 2x - 3y + \frac{9}{4} = 0\) dividing by 4

\(x^2 - 2x + y^2 - 3y = -\frac{9}{4}\)

Add to each side: \(\left[\frac{1}{2}(-2)\right]^2 = 1\) and \(\left[\frac{1}{2}(-3)\right]^2 = \frac{9}{4}\) to get

\[(x - 1)^2 + (y - \frac{3}{2})^2 = 1 \]

Center: \((1, \frac{3}{2})\); radius: 1.
22. \(4x^2 + 4y^2 - 20x - 8y + 25 = 0\)

First divide both sides by 4:
\[
x^2 + y^2 - 5x - 2y + \frac{25}{4} = 0
\]
\[
x^2 - 5x + y^2 - 2y = -\frac{25}{4}
\]
Add to each side: \(\left[\frac{1}{2}(-5)\right]^2 = \frac{25}{4}\) and \(\left[\frac{1}{2}(-2)\right]^2 = 1\)

\[
x^2 - 5x + \frac{25}{4} + y^2 - 2y + 1 = -\frac{25}{4} + \frac{25}{4} + 1
\]

\[
(x - \frac{5}{2})^2 + (y - 1)^2 = 1; \text{ Center: } \left(\frac{5}{2}, 1\right); \text{ radius: 1}
\]

23. \(x^2 + y^2 + 4x - 2y - 4 = 0\)

\[
x^2 + 4x + y^2 - 2y = 4
\]

Note that \(\left(\frac{1}{2} \cdot 4\right)^2 = 4\) and \(\left[\frac{1}{2}(-2)\right]^2 = 1\).

Adding 4 and 1, respectively, we get
\[
(x^2 + 4x + 4) + (y^2 - 2y + 1) = 4 + 4 + 1
\]
\[
(x + 2)^2 + (y - 1)^2 = 9.
\]

The equation can be written
\[
[x - (-2)]^2 + (y - 1)^2 = 3^2.
\]

So the center is \((-2, 1)\) and the radius is 3.

24. \(x^2 + y^2 + 2x + 8y + 1 = 0\)

\[
x^2 + 2x + y^2 + 8y = -1
\]

Add to each side: \(\left[\frac{1}{2}(2)\right]^2 = 1\) and \(\left[\frac{1}{2}(8)\right]^2 = 16\)

\[
x^2 + 2x + 1 + y^2 + 8y + 16 = -1 + 1 + 16
\]

\[
(x + 1)^2 + (y + 4)^2 = 16; \text{ Center: } (-1, -4); \text{ radius: 4}
\]

25. \(x^2 + y^2 - x - 2y + \frac{1}{4} = 0\)

\[
x^2 - x + y^2 - 2y = -\frac{1}{4}
\]

Add to each side: \(\left[\frac{1}{2}(-1)\right]^2 = \frac{1}{4}\) and \(\left[\frac{1}{2}(-2)\right]^2 = 1\) to get

\[
(x^2 - x + \frac{1}{4}) + (y^2 - 2y + 1) = -\frac{1}{4} + \frac{1}{4} + 1
\]
\[
(x - \frac{1}{2})^2 + (y - 1)^2 = 1.
\]

Center: \(\left(\frac{1}{2}, 1\right)\); radius: 1.

26. \(x^2 + y^2 - 6x + 8y + 19 = 0\)

\[
x^2 - 6x + y^2 - 8y = -19
\]

Add to each side: \(\left[\frac{1}{2}(-6)\right]^2 = 9\) and \(\left[\frac{1}{2}(-8)\right]^2 = 16\)

\[
x^2 - 6x + 9 + y^2 - 8y + 16 = -19 + 9 + 16
\]

\[
(x - 3)^2 + (y - 4)^2 = 6; \text{ Center: } (3, 4); \text{ radius: } \sqrt{6}
\]
27. \[x^2 + y^2 - 4x + y + \frac{9}{4} = 0 \]
\[x^2 - 4x + y^2 + y = -\frac{9}{4} \]

Note that \[\left(\frac{1}{2}(-4)\right)^2 = 4 \] and \[\left(\frac{1}{2} \cdot 1\right)^2 = \frac{1}{4} \].

Adding 4 and \(\frac{1}{4} \), respectively, we get
\[(x - 2)^2 + (y + \frac{1}{2})^2 = 2. \]

The equation can be written
\[(x - 2)^2 + \left[y - \left(-\frac{1}{2}\right)\right]^2 = (\sqrt{2})^2. \]

Center: \((2, -\frac{1}{2})\); radius: \(\sqrt{2}\).

28. \[x^2 + y^2 + x - y - \frac{1}{2} = 0 \]
\[x^2 + x + y^2 - y = \frac{1}{2} \]

Add to each side: \[\left(\frac{1}{2}(1)\right)^2 = \frac{1}{4} \] and \[\left(\frac{1}{2}(-1)\right)^2 = \frac{1}{4} \]
\[x^2 + x + \frac{1}{4} + y^2 - y + \frac{1}{4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{4} \]
\[(x + \frac{1}{2})^2 + (y - \frac{1}{2})^2 = 1; \text{ Center: } \left(-\frac{1}{2}, \frac{1}{2}\right); \text{ radius: } 1 \]

29. \[4x^2 + 4y^2 + 12x + 16y + 5 = 0 \]
\[x^2 + y^2 + 3x + 4y + \frac{5}{4} = 0 \]
\[x^2 + 3x + y^2 + 4y = -\frac{5}{4} \]

Add to each side: \[\left(\frac{1}{2} \cdot 3\right)^2 = \frac{9}{4} \] and \[\left(\frac{1}{2} \cdot 4\right)^2 = 4 \] to get
\[x^2 + 3x + \frac{9}{4} + y^2 + 4y + 4 = -\frac{5}{4} + \frac{9}{4} + 4 \]
\[(x + \frac{3}{2})^2 + (y + 2)^2 = 5. \]

Center: \((-\frac{3}{2}, -2)\); radius: \(\sqrt{5}\).

30. \[36x^2 + 36y^2 - 144x - 120y + 219 = 0 \]

First divide both sides by 36:
\[x^2 + y^2 - 4x - \frac{10}{3}y + \frac{219}{36} = 0 \]
\[x^2 - 4x + y^2 - \frac{10}{3}y = -\frac{219}{36} \]

Add to each side: \[\left(\frac{1}{2}(-4)\right)^2 = 4 \] and \[\left(\frac{1}{2}\left(-\frac{10}{3}\right)\right)^2 = \frac{25}{9} \]
\[x^2 - 4x + 4 + y^2 - \frac{10}{3}y + \frac{25}{9} = -\frac{219}{36} + 4 + \frac{25}{9} = \frac{-219 + 144 + 100}{36} \]
\[(x - 2)^2 + \left(y - \frac{5}{3} \right)^2 = \frac{25}{36}; \text{ Center: } \left(2, \frac{5}{3}\right); \text{ radius: } \frac{5}{6} \]

31. \[4x^2 + 4y^2 - 20x - 4y + 26 = 0 \]
\[x^2 + y^2 - 5x - y + \frac{26}{4} = 0 \]

dividing by 4
\[x^2 - 5x + y^2 - y = -\frac{26}{4} \]
\[x^2 - 5x + \frac{25}{4} + y^2 - y + \frac{1}{4} = -\frac{26}{4} + \frac{25}{4} + \frac{1}{4} \]
\[(x - \frac{5}{2})^2 + (y - \frac{1}{2})^2 = 0 \]

Locus is the single point \(\left(\frac{5}{2}, \frac{1}{2}\right)\).
32. \[x^2 + y^2 + 4x - 2y + 7 = 0\]
 \[x^2 + 4x + y^2 - 2y = -7\]
 \[x^2 + 4x + 4 + y^2 - 2y + 1 = -7 + 4 + 1\]
 \[(x + 2)^2 + (y - 1)^2 = -2\]

Imaginary circle

33. \[x^2 + y^2 - 6x + 8y + 25 = 0\]
 \[x^2 - 6x + y^2 + 8y = -25\]
 \[(x^2 - 6x + 9) + (y^2 + 8y + 16) = -25 + 9 + 16\]
 \[(x - 3)^2 + (y + 4)^2 = 0\]

Locus is the single point \((3, -4)\).

34. \[x^2 + y^2 + 2x + 4y + 5 = 0\]
 \[x^2 + 2x + y^2 + 4y = -5\]
 \[x^2 + 2x + 1 + y^2 + 4y + 4 = -5 + 1 + 4\]
 \[(x + 1)^2 + (y + 2)^2 = 0\]

Point circle: \((-1, -2)\)

35. \[x^2 + y^2 - 6x - 8y + 30 = 0\]
 \[x^2 - 6x + y^2 - 8y = -30\]
 \[x^2 - 6x + 9 + y^2 - 8y + 16 = -30 + 9 + 16\]
 \[(x - 3)^2 + (y - 4)^2 = -5\]

(imaginary circle)

36. \[x^2 + y^2 - 6x + 4y + 13 = 0\]
 \[x^2 - 6x + y^2 + 4y = -13\]
 \[x^2 - 6x + 9 + y^2 + 4y + 4 = -13 + 9 + 4\]
 \[(x - 3)^2 + (y + 2)^2 = 0\]

Point circle: \((3, -2)\)

37. \[x^2 + y^2 - x + 4y + \frac{17}{4} = 0\]
 \[x^2 - x + y^2 + 4y = -\frac{17}{4}\]

We add to each side \(\left[\frac{1}{2}(-1)\right]^2\) and \(\left[\frac{1}{2}(4)\right]^2\):
\[x^2 - x + \frac{1}{4} + y^2 + 4y + 4 = -\frac{17}{4} + \frac{1}{4} + 4\]
\[(x - \frac{1}{2})^2 + (y + 2)^2 = 0\]

(point circle)

38. From the given circle, we have
 \[x^2 - 6x + y^2 - 4y = 12\]
 \[x^2 - 6x + 9 + y^2 - 4x + 4 = 12 + 9 + 4\]
 \[(x - 3)^2 + (y - 2)^2 = 25\]

Center: \((3, 2)\); Desired circle: \((x - 3)^2 + (y - 2)^2 = 9\)

39. \[x^2 + y^2 = (2.00)^2 = 4.00; \ x^2 + y^2 = (3.40)^2 = 11.6\]

40. Center: \((5.00, 5.00)\); radius: 2.10
 \[(x - 5.00)^2 + (y - 5.00)^2 = (2.10)^2\]
 \[x^2 - 10.0x + 25.00 + y^2 - 10.0y + 25.00 = 4.41\]
 \[x^2 + y^2 - 10.0x - 10.0y + 45.6 = 0\]

41. The radius is 22,300 + 4000 = 26,300 mi.
43. \((h,k) = (0,0)\) and \(r = \frac{3}{2}\) ft: \(x^2 + y^2 = \frac{9}{4}\) and \(y = \sqrt{\frac{9}{4} - x^2}\)

1.8 The Parabola

1. Since the focus is on the \(x\)-axis, the form is \(y^2 = 4px\). Since the focus is at \((3,0)\), \(p = 3\) (positive). Thus \(y^2 = 4(3)x\), or \(y^2 = 12x\).

2. Since the focus is on the \(x\)-axis, the form is \(y^2 = 4px\). Since the focus is at \((-3,0)\), \(p = -3\) (negative). Thus \(y^2 = 4(-3)x\), or \(y^2 = -12x\).

3. Since the focus is on the \(y\)-axis, the form is \(x^2 = 4py\). Since the focus is at \((0,-5)\), \(p = -5\) (negative). Thus \(x^2 = 4(-5)y\), or \(x^2 = -20y\).

4. Since the focus is on the \(y\)-axis, the form is \(x^2 = 4py\). Since the focus is at \((0,4)\), \(p = 4\) (positive). Thus \(x^2 = 4(4)y\), or \(x^2 = 16y\).

5. Since the focus is on the \(x\)-axis, the form is \(y^2 = 4px\). The focus is on the left side of the origin, at \((-4,0)\). So \(p = -4\) (negative). It follows that \(y^2 = 4(-4)x\), or \(y^2 = -16x\).

6. Since the focus is on the \(y\)-axis, the form is \(x^2 = 4py\). Since the focus is at \((0,-6)\), \(p = -6\) (negative). Thus \(x^2 = 4(-6)y\), or \(x^2 = -24y\).

7. Since the directrix is \(x = -1\), the focus is at \((1,0)\). So the form is \(y^2 = 4px\) with \(p = 1\), and the equation is \(y^2 = 4x\).

8. Since the directrix is \(y = 2\), the focus is at \((0,-2)\), so that \(p = -2\). From the form \(x^2 = 4py\), we get \(x^2 = -8y\).

9. Since the directrix is \(x = 2\), the focus is at \((-2,0)\). So the form is \(y^2 = 4px\) with \(p = -2\). Thus \(y^2 = -8x\).

10. Directrix: \(x = -2\); focus: \((2,0)\); form: \(y^2 = 4px\); equation: \(y^2 = 8x\)

11. Form: \(y^2 = 4px\). Substituting the coordinates of the point \((-2, -4)\), we get

\[
(-4)^2 = 4p(-2) \quad \text{and} \quad 4p = -8.
\]

Thus \(y^2 = -8x\).

12. Form: \(x^2 = 4py\); the coordinates of the point \((-1, 1)\) satisfy the equation: \((-1)^2 = 4p(1)\), so \(4p = 1\), and we get \(x^2 = y\).

13. The form is either

\[
y^2 = 4px \quad \text{or} \quad x^2 = 4py.
\]

Substituting the coordinates of the point \((1, 1)\), we get

\[
1^2 = 4p \cdot 1 \quad \text{or} \quad 1^2 = 4p \cdot 1.
\]

In either case, \(p = \frac{1}{4}\). So the equations are \(y^2 = x\) and \(x^2 = y\).
14. Both forms are possible; substituting the coordinates of the point \((2, -1)\), we get
\[
\begin{align*}
x^2 &= 4py \\
2^2 &= 4p(-1) \\
4p &= -4 \\
x^2 &= -4y
\end{align*}
\]
\[
\begin{align*}
y^2 &= 4px \\
(-1)^2 &= 4p(2) \\
4p &= \frac{1}{2} \\
y^2 &= \frac{1}{2}x
\end{align*}
\]

15. The form is either \(y^2 = 4px\) or \(x^2 = 4py\). Substituting the coordinates of the point \((-2, 4)\), we get
\[
4^2 = 4p(-2) \quad \text{or} \quad (-2)^2 = 4p(4)
\]
The respective values of \(p\) are \(-2\) and \(\frac{1}{2}\); so the equations are \(y^2 = -8x\) and \(x^2 = y\).

16. Form: \(y^2 = 4px\) or \(x^2 = 4py\). Substituting \((3, -5)\):
\[
\begin{align*}
25 &= 4p(3) \quad \text{or} \quad 9 = 4p(-5) \\
p &= \frac{25}{12} \quad \text{or} \quad p = \frac{-9}{20}
\end{align*}
\]
The equations are \(y^2 = \frac{25}{3}x\) and \(x^2 = -\frac{9}{5}y\).

17. From \(x^2 = 12y\), we have \(x^2 = 4(3y)\). Thus \(p = 3\) and the focus is at \((0, 3)\).

18. \(x^2 = 20y\)
\[
\begin{align*}
x^2 &= 4(5)y \\
p &= 5 \\
\text{focus}: \ (0, 5)
\end{align*}
\]

19. From \(x^2 = -8y\), we have \(x^2 = 4(-2)y\). So \(p = -2\) and the focus is at \((0, -2)\).
20. \(x^2 = -24y \)
\(x^2 = 4(-6)y \)
\(p = -6 \)

\[y = 6 \]
\[x = 0 \]
\[(0, -6) \]

21. \(y^2 = 24x = 4(6)x; p = 6 \) and the focus is at \((6, 0)\).

\[(6, 0)^2 \]

22. \(y^2 = 12x \)
\(y^2 = 4(3)x \)
\(p = 3 \)

\[x = -3 \]
\[x = 0 \]
\[(3, 0) \]

23. From \(y^2 = -4x \), \(y^2 = 4(-1)x \). So \(p = -1 \) and the focus is at \((-1, 0)\).

\[(-1, 0) \]

24. \(y^2 = -12x \)
\(y^2 = 4(-3)x \)
\(p = -3 \)

\[(3, 0) \]

\[x = 3 \]
25. \(x^2 = 4y = 4(1)y; \ p = 1 \) and the focus is at \((0, 1)\).

\[
\begin{array}{c}
\text{(0,1)} \\
0 \\
x
\end{array}
\]

26. \(x^2 = -12y \)
\(x^2 = 4(-3)y \)

Focus: \((0, -3)\), Directrix: \(y - 3 = 0\)

27. From \(y^2 = 9x, \ y^2 = 4\left(\frac{3}{4}\right)x \) (inserting 4). So \(p = \frac{9}{4} \) and the focus is at \(\left(\frac{9}{4}, 0\right)\).

28. \(y^2 = 10x \)
\(y^2 = 4\left(\frac{5}{2}\right)x \)
\(p = \frac{5}{2} \)

Focus: \(\left(\frac{5}{2}, 0\right)\), Directrix: \(x + \frac{5}{2} = 0\)

29. \(y^2 = -x = 4(-\frac{1}{4})x; \ p = -\frac{1}{4} \) and the focus is at \((-\frac{1}{4}, 0)\).

30. \(x^2 = \frac{3}{2}y \)
\(x^2 = 4\left(\frac{3}{8}\right)y \)
\(p = \frac{3}{8} \)

31. \(3y^2 + 2x = 0 \)
\(y^2 = -\frac{2}{3}x \)
\(y^2 = 4\left(-\frac{2}{3}\cdot\frac{1}{8}\right)x \)
\(y^2 = 4\left(-\frac{1}{8}\right)x \)

So the focus is at \((-\frac{1}{6}, 0)\).

32. \(y^2 = 2ax \)
\(y^2 = 4\left(\frac{a}{2}\right)x \)
\(p = \frac{a}{2} \)

Focus: \(\left(\frac{a}{2}, 0\right)\), Directrix: \(x + \frac{a}{2} = 0\)

33. \(x^2 = 4(3)y; \ p = 3 \). Focus: \((0, 3)\); Directrix: \(y = -3\).

\[
\begin{array}{c}
\text{(-6,3)} \\
(-6) \\
0 \\
6 \\
\end{array}
\]

\[
\begin{array}{c}
\text{(6,3)} \\
\end{array}
\]

\[
\begin{array}{c}
y = -3 \\
\end{array}
\]

Observe that the points \((6, 3)\) and \((-6, 3)\) lie on the curve because the distance to the focus must be equal to the distance to the directrix.
Circle: \((x - h)^2 + (y - k)^2 = r^2\)
\((x - 0)^2 + (y - 3)^2 = 6^2\)
\(x^2 + y^2 - 6y + 9 = 36\)
\(x^2 + y^2 - 6y - 27 = 0.\)

34. Let \((x,y)\) be a point on the parabola in Figure 1.46.

Distance to \((0,p): \sqrt{(x - 0)^2 + (y - p)^2}\)
Distance to the line \(y = -p: y - (-p) = y + p\)

By definition, the distances are equal. So
\(\sqrt{(x - 0)^2 + (y - p)^2} = y + p\)
\(x^2 + (y - p)^2 = (y + p)^2\) (squaring both sides)
\(x^2 + y^2 - 2py + p^2 = y^2 + 2py + p^2\)
\(x^2 = 4py\) after collecting terms

35. We need to find the locus of points \((x, y)\) equidistant from \((4, 1)\) and the \(y\)-axis. Since the distance from \((x, y)\) to the \(y\)-axis is \(x\) units, we get
\(\sqrt{(x - 4)^2 + (y - 1)^2} = x\)
\((x - 4)^2 + (y - 1)^2 = x^2\)
\(x^2 - 8x + 16 + y^2 - 2y + 1 = x^2\)
\(y^2 - 2y - 8x + 17 = 0.\)

36. From the figure, \(d_1 = d_2:\)
\(\sqrt{(x - 4)^2 + (y - 7)^2} = y + 1\)
\((x - 4)^2 + (y - 7)^2 = (y + 1)^2\) (squaring both sides)
\(x^2 - 8x + 16 + y^2 - 14y + 49 = y^2 + 2y + 1\)
\(x^2 - 8x - 16y + 64 = 0\)

37. If the origin is the lowest point on the cable, then the top of the right supporting tower is at \((100, 70)\).

From the equation \(x^2 = 4py\), we get
\((100)^2 = 4p(70)\)
\(4p = \frac{10,000}{70} = \frac{1000}{7}\).
The equation is therefore
\(x^2 = \frac{1000}{7}y.\)
To find the length of the cable 30 m from the center, we let \(x = 30 \):

\[
30^2 = \frac{1000}{7} y \quad \text{and} \quad y = \frac{6300}{1000} = 6.3.
\]

So the length of the cable is \(20 + 6.3 = 26.3 \text{ m} \).

38. Place the parabola with vertex at the origin and axis along the \(x \)-axis. From the given information the point \((12.0,10.0)\) lies on the curve. Substituting coordinates,

\[
y^2 = 4px
\]

\[
(10.0)^2 = 4p(12.0)
\]

\[4p = \frac{100}{12} \quad \text{and} \quad p = 2.08 \text{ cm}
\]

So the light bulb is placed at the focus, 2.08 cm from the vertex.

39.

The required minimum clearance of 12 ft yields the point \((20, -13)\) in the figure.

\[
x^2 = 4py
\]

\[
20^2 = 4p(-13) \quad \text{or} \quad 4p = \frac{20^2}{-13}
\]

Equation: \(x^2 = -\frac{20^2}{13} y \).

When \(y = -25 \),

\[
x^2 = \frac{20^2}{13}(-25)
\]

\[
x = \sqrt{\frac{20^2 \cdot 25}{13}} = \frac{20 \cdot 5}{\sqrt{13}} = \frac{100}{\sqrt{13}}
\]

\[
2x = \frac{200}{\sqrt{13}} \approx 55.5 \text{ ft}
\]

40.

The problem is to find \(y \) in the figure; observe that \(y + 10.0 \) corresponds to the maximum clearance. There are two equations from the form \(x^2 = 4py \):

\[
(30.0)^2 = 4py
\]

\[
(20.0)^2 = 4p(y + 10.0)
\]

\[
(30.0)^2 - (20.0)^2 = -4p(10.0) \quad \text{(subtracting)}
\]

\[
4p = -50
\]
Equation: \(x^2 = -50.0y\); to find \(y\), let \(x = 30.0\):

\[
(30.0)^2 = -50y
\]

\[
y = \frac{30.0^2}{-50.0} = -18.0
\]

So the height of the arch is 18.0 m.

41. We place the vertex of the parabola at the origin, so that one point on the parabola is \((3, -3)\) (from the given dimensions). Substituting in the equation \(x^2 = 4py\), we get

\[
3^2 = 4p(-3)
\]

\[
4p = -3.
\]

The equation is therefore seen to be \(x^2 = -3y\).

![Diagram of a parabola with vertex at the origin, showing the right end of the beam 2 m above the base at \((x, -1)\) and the point \((3, -3)\) on the curve.](image)

The right end of the beam 2 m above the base is at \((x, -1)\). To find \(x\), let \(y = -1\):

\[
x^2 = -3(-1) = 3
\]

\[
x = \pm \sqrt{3}.
\]

Hence the length of the beam is \(2|x| = 2\sqrt{3}\) m.

42. \(y = 1.5x - 0.1x^2 = 0\) when \(x = 15\) ft.

43. \(x^2 = 4py\). From Figure 1.55, we see that the point \((4, 1)\) lies on the curve: \(4^2 = 4p(1)\). So \(p = 4\) ft.

44. Place the parabola with vertex at the origin and axis along the \(x\)-axis. From the given information the point \((1.7, y)\) lies on the curve. The problem is to find \(y\), given that \(p = 11.9\).

\[
y^2 = 4px = 4 \cdot 11.9 \cdot 1.7
\]

Diameter = \(2y = 2\sqrt{4 \cdot 11.9 \cdot 1.7} = 18.0\) in.

1.9 The Ellipse

1. The equation is

\[
\frac{x^2}{25} + \frac{y^2}{16} = 1.
\]

So by (1.16), \(a^2 = 25\) and \(b^2 = 16\); thus \(a = 5\) and \(b = 4\). Since the major axis is horizontal, the vertices are at \((\pm5, 0)\). From \(b^2 = a^2 - c^2\),

\[
16 = 25 - c^2
\]

\[
c^2 = 9
\]

\[
c = \pm 3.
\]

The foci are therefore at \((\pm3, 0)\), on the major axis. Finally, the length of the semi-minor axis is equal to \(b = 4\).
2. \(\frac{x^2}{16} + \frac{y^2}{9} = 1 \)

By (1.16), \(a^2 = 16 \) and \(b^2 = 9 \); so \(a = 4 \) and \(b = 3 \). Since the major axis is horizontal, the vertices are at \((\pm 4,0)\). From \(b^2 = a^2 - c^2 \),
\[
9 = 16 - c^2 \\
c^2 = 7 \\
c = \pm \sqrt{7}
\]
So the foci are at \((\pm \sqrt{7},0)\), on the major axis. Finally, the length of the semiminor axis is \(b = 3 \).

3. The equation is
\[
\frac{x^2}{9} + \frac{y^2}{4} = 1.
\]
So by (1.16), \(a^2 = 9 \) and \(b^2 = 4 \); thus \(a = 3 \) and \(b = 2 \). Since the major axis is horizontal, the vertices are at \((\pm 3,0)\). From \(b^2 = a^2 - c^2 \),
\[
4 = 9 - c^2 \\
c^2 = 5 \\
c = \pm \sqrt{5}.
\]
The foci are therefore at \((\pm \sqrt{5},0)\), on the major axis. Finally, the length of the semi-minor axis is equal to \(b = 2 \).
4. \(\frac{x^2}{4} + \frac{y^2}{9} = 1 \)

By (1.17), \(a = 3 \) and \(b = 2 \). From \(b^2 = a^2 - c^2 \),

\[
\begin{align*}
4 &= 9 - c^2 \\
\frac{a^2}{c^2} &= 5 \\
c &= \pm\sqrt{5}
\end{align*}
\]

Since the major axis is vertical, the vertices are at \((0, \pm 3)\) and the foci are at \((0, \pm \sqrt{5})\). The length of the semiminor axis is \(b = 2 \).

5. The equation is

\[
\frac{x^2}{16} + y^2 = 1.
\]

By (1.16), \(a = 4 \) and \(b = 1 \). From \(b^2 = a^2 - c^2 \),

\[
\begin{align*}
1 &= 16 - c^2 \\
\frac{a^2}{c^2} &= 15 \\
c &= \pm\sqrt{15}
\end{align*}
\]

Since the major axis is horizontal, the vertices and foci lie on the \(x \)-axis. The vertices are therefore at \((\pm 4, 0)\) and the foci are at \((\pm\sqrt{15}, 0)\). The length of the semi-minor axis is \(b = 1 \).

6. \(\frac{x^2}{2} + \frac{y^2}{4} = 1 \)

By (1.17), \(a = 2 \) and \(b = \sqrt{2} \), major axis vertical.

\[
\begin{align*}
\frac{a^2}{c^2} &= a^2 - c^2 \\
2 &= 4 - c^2 \\
c &= \pm\sqrt{2}
\end{align*}
\]
Vertices: \((0, \pm 2)\), foci: \((0, \pm \sqrt{2})\), semiminor axis: \(\sqrt{2}\).

7. \[16x^2 + 9y^2 = 144\]
 \[
 \frac{x^2}{9} + \frac{y^2}{16} = 1
 \]
 So by (1.17), \(a^2 = 16\) and \(b^2 = 9\); so \(a = 4\) and \(b = 3\). Since the major axis is vertical, the vertices are at \((0, \pm 4)\). From \(b^2 = a^2 - c^2\)
 \[
 9 = 16 - c^2
 \]
 \[
 c = \pm \sqrt{7}.
 \]
 The foci are therefore at \((0, \pm \sqrt{7})\). Semi-minor axis: \(b = 3\).

![Graph of an ellipse with major axis vertical.

8. \[x^2 + 2y^2 = 4\]
 \[
 \frac{x^2}{4} + \frac{y^2}{2} = 1
 \]
 By (1.16), \(a = 2\) and \(b = \sqrt{2}\), major axis horizontal
 \[
 b^2 = a^2 - c^2
 \]
 \[
 2 = 4 - c^2
 \]
 \[
 c = \pm \sqrt{2}
 \]
 Vertices: \((\pm 2, 0)\), foci: \((\pm \sqrt{2}, 0)\), semiminor axis: \(\sqrt{2}\).

![Graph of an ellipse with major axis horizontal.

9. \[5x^2 + 2y^2 = 20\]
 \[
 \frac{5x^2}{20} + \frac{2y^2}{20} = 1
 \]
 \[
 \frac{x^2}{4} + \frac{y^2}{10} = 1
 \]
 By (1.17), \(a = \sqrt{10}\) and \(b = 2\). Since the major axis is vertical, the vertices are at \((0, \pm \sqrt{10})\).
 From \(b^2 = a^2 - c^2\)
 \[
 4 = 10 - c^2
 \]
 \[
 c = \pm \sqrt{6}.
 \]
 The foci, also on the major axis, are therefore at \((0, \pm \sqrt{6})\), while the length of the semi-minor axis is \(b = 2\). (See sketch in answer section of book.)
10. \[5x^2 + 9y^2 = 45\]
\[\frac{x^2}{9} + \frac{y^2}{5} = 1\]

By (1.16), \(a = 3\) and \(b = \sqrt{5}\), major axis horizontal

\[b^2 = a^2 - c^2\]
\[5 = 9 - c^2\]
\[c = \pm 2\]

Vertices: \((\pm 3,0)\), foci: \((\pm 2,0)\), semimajor axis: \(\sqrt{5}\).

11. \[5x^2 + y^2 = 5\]
\[\frac{x^2}{1} + \frac{y^2}{5} = 1\]

major axis vertical

Vertices: \((0, \pm \sqrt{5})\), foci: \((0, \pm 2)\). Length of semi-minor axis: \(b = 1\). (See sketch in answer section of book.)

12. \[x^2 + 4y^2 = 4\]
\[\frac{x^2}{4} + \frac{y^2}{1} = 1\]

\(a = 2\) and \(b = 1\), major axis horizontal

\[b^2 = a^2 - c^2\]
\[1 = 4 - c^2\]
\[c = \pm \sqrt{3}\]

Vertices: \((\pm 2,0)\), foci: \((\pm \sqrt{3},0)\), semiminor axis: \(1\).

13. \[x^2 + 2y^2 = 6\]
\[\frac{x^2}{6} + \frac{2y^2}{6} = 1\]
\[\frac{x^2}{6} + \frac{y^2}{3} = 1\]

major axis horizontal

Thus \(a = \sqrt{6}\) and \(b = \sqrt{3}\). From \(b^2 = a^2 - c^2\),
\[3 = 6 - c^2\]
\[c = \pm \sqrt{3}\]

Vertices: \((\pm \sqrt{6},0)\); foci: \((\pm \sqrt{3},0)\). Length of semi-minor axis: \(b = \sqrt{3}\). (See sketch in answer section of book.)

14. \[9x^2 + 2y^2 = 18\]
\[\frac{x^2}{2} + \frac{y^2}{9} = 1\]

\(a = 3\) and \(b = \sqrt{2}\), major axis vertical

\[b^2 = a^2 - c^2\]
\[2 = 9 - c^2\]
\[c = \pm \sqrt{7}\]

Vertices: \((0, \pm 3)\), foci: \((0, \pm \sqrt{7})\), semiminor axis: \(\sqrt{2}\).
15. \(15x^2 + 7y^2 = 105\)
\[
\frac{x^2}{7} + \frac{y^2}{15} = 1 \quad \text{major axis vertical}
\]
Thus \(a = \sqrt{15}\) and \(b = \sqrt{7}\). From \(b^2 = a^2 - c^2\)
\[
7 = 15 - c^2
\]
\(c = \pm \sqrt{8} = \pm 2\sqrt{2}.
\]
Vertices: \((0, \pm \sqrt{15})\), foci: \((0, \pm 2\sqrt{2})\). Length of semi-minor axis: \(b = \sqrt{7}\).

16. \(9x^2 + y^2 = 27\)
\[
\frac{x^2}{3} + \frac{y^2}{27} = 1 \quad a = \sqrt{27} = 3\sqrt{3} \text{ and } b = \sqrt{3}, \text{ major axis vertical}
\]
\[
b^2 = a^2 - c^2
\]
\[
3 = 27 - c^2
\]
\(c = \pm \sqrt{24} = \pm 2\sqrt{6}.
\]
Vertices: \((0, \pm 3\sqrt{3})\), foci: \((0, \pm 2\sqrt{6})\), semiminor axis: \(\sqrt{3}\).

17. \(3x^2 + 4y^2 = 12\)
\[
\frac{x^2}{4} + \frac{y^2}{3} = 1 \quad \text{dividing by 12}
\]
Since \(a^2 = 4\), \(a = \pm 2\), so the vertices are at \((\pm 2, 0)\). From \(b^2 = 3\), we get \(b = \sqrt{3}\) (semiminor axis). \(b^2 = a^2 - c^2\) yields \(c = \pm 1\).

18. \(\frac{x^2}{5} + \frac{y^2}{12} = 1\) yields \(a = \pm \sqrt{5}, b = \pm 2\sqrt{3}\).

From \(b^2 = a^2 - c^2\), we get \(c = \pm \sqrt{7}\).

20. Graph the two equations \(y = \sqrt{\frac{1}{2}(5 - 6x^2)}\) and \(y = -\sqrt{\frac{1}{2}(5 - 6x^2)}\).

22. Graph the two equations \(y = \pm \sqrt{1 - \frac{1}{4}x^2}\).

23. Since the foci \((\pm 2, 0)\) lie along the major axis, the major axis is horizontal. So the form of the equation is
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.
\]
Since the vertices are at \((\pm 3, 0)\), \(a = 3\). From \(b^2 = a^2 - c^2\) (with \(c = 2\)), we get \(b^2 = 9 - 4 = 5\).
So the equation is
\[
\frac{x^2}{9} + \frac{y^2}{5} = 1.
\]

24. Since the foci are at \((0, \pm 3)\), the major axis is vertical
\[
\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \quad \text{(form)}
\]
Since the length of the major axis is 8, \(a = 4\), while \(c = 3\). Hence \(b^2 = a^2 - c^2 = 16 - 9 = 7\)
and \(\frac{x^2}{7} + \frac{y^2}{16} = 1\).
25. Since the foci \((0, \pm 2)\) lie on the major axis, the major axis is vertical. So by (1.17) the form of the equation is
\[
\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1.
\]
Since the length of the major axis is 8, \(a = 4\). From \(b^2 = a^2 - c^2\) with \(c = 2\), \(b^2 = 16 - 4 = 12\). Hence
\[
\frac{x^2}{12} + \frac{y^2}{16} = 1 \quad \text{or} \quad 4x^2 + 3y^2 = 48.
\]

26. Since the length of the entire major axis is 6, we get \(a = 3\). Foci at \((0, \pm 2)\) implies that \(c = 2\) and that the major axis is vertical. From \(b^2 = a^2 - c^2\) and from the form
\[
\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \quad \text{we get} \quad \frac{x^2}{5} + \frac{y^2}{9} = 1.
\]

27. Since the foci are at \((0, \pm 3)\), \(c = 3\), and the major axis is vertical. By (1.17)
\[
\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1.
\]
Since the length of the minor axis is 6, \(b = 3\). From \(b^2 = a^2 - c^2\), \(9 = a^2 - 9\) and \(a^2 = 18\).
Equation: \(\frac{x^2}{9} + \frac{y^2}{18} = 1\) or \(2x^2 + y^2 = 18\).

28. Since the length of the entire minor axis is 4, \(b = 2\). Foci at \((0, \pm 2)\) implies that \(c = 2\) and that the major axis is vertical. From \(b^2 = a^2 - c^2\), \(4 = a^2 - 4\) and \(a^2 = 8\). By (1.17)
\[
\frac{x^2}{4} + \frac{y^2}{8} = 1.
\]

29. Since the vertices and foci are on the \(y\)-axis, the form of the equation is, by (1.17),
\[
\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1.
\]
From \(b^2 = a^2 - c^2\) with \(a = 8\) and \(c = 5\), \(b^2 = 64 - 25 = 39\). Hence
\[
\frac{x^2}{39} + \frac{y^2}{64} = 1.
\]

30. Foci at \((\pm 3, 0)\) implies that \(c = 3\) and that the major axis is horizontal; \(b = 4\) (seminor axis). From \(b^2 = a^2 - c^2\), we have \(16 = a^2 - 9\), or \(a^2 = 25\). By (1.16)
\[
\frac{x^2}{25} + \frac{y^2}{16} = 1 \quad \text{or} \quad 16x^2 + 25y^2 = 400.
\]

31. Form: \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\); \(c = 2\sqrt{3}\), \(b = 2\). From \(b^2 = a^2 - c^2\), \(4 = a^2 - (2\sqrt{3})^2\) and \(a^2 = 16\).
Equation: \(\frac{x^2}{16} + \frac{y^2}{4} = 1\) or \(x^2 + 4y^2 = 16\).

32. Since the foci and vertices lie on the major axis, the major axis is horizontal. Moreover, \(c = \sqrt{5}\) and \(a = \sqrt{7}\). So \(b^2 = 7 - 5 = 2\) and by (1.16),
\[
\frac{x^2}{7} + \frac{y^2}{2} = 1 \quad \text{or} \quad 2x^2 + 7y^2 = 14.
\]
33. From the form \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)
we get (since \(b = 2 \))
\[\frac{x^2}{a^2} + \frac{y^2}{4} = 1 \]
Substituting the coordinates of the point \((3, 1)\) yields
\[\frac{9}{a^2} + \frac{1}{4} = 1 \quad \text{and} \quad \frac{9}{a^2} = \frac{3}{4}. \]
So
\[\frac{a^2}{9} = \frac{4}{3} \quad \text{and} \quad a^2 = 12. \]
Equation:
\[\frac{x^2}{12} + \frac{y^2}{4} = 1 \quad \text{or} \quad x^2 + 3y^2 = 12 \]

34. Since \(b = 3 \), we get from (1.17), \(\frac{x^2}{9} + \frac{y^2}{a^2} = 1. \) Since (1,4) lies on the curve, the values \(x = 1 \) and \(y = 4 \) satisfies the equation:
\[\frac{1^2}{9} + \frac{4^2}{a^2} = 1 \quad \text{whence} \quad a^2 = 18 \quad \text{and} \quad 2x^2 + y^2 = 18. \]

35. From the original derivation of the ellipse, \(2a = 16 \) and \(a = 8. \) Since the foci are at \((\pm 6, 0)\),
\(c = 6. \) Thus \(b^2 = a^2 - c^2 = 64 - 36 = 28. \)
By (1.16) the equation is
\[\frac{x^2}{64} + \frac{y^2}{28} = 1. \]

36. Vertices at \((\pm 4, 0)\) tell us that \(a = 4 \) and that the major axis is horizontal. The definition of eccentricity gives the following equation:
\[e = \frac{1}{2} = \frac{c}{a} \quad \text{or} \quad \frac{1}{2} = \frac{c}{4} \]
which yields \(c = 2. \) Finally, \(b^2 = a^2 - c^2 = 16 - 4 = 12. \) By (1.16),
\[\frac{x^2}{16} + \frac{y^2}{12} = 1 \quad \text{or} \quad 3x^2 + 4y^2 = 48. \]

37. \(9x^2 + 5y^2 = 45 \) or \(\frac{x^2}{5} + \frac{y^2}{9} = 1; \ a = 3; \ b = \sqrt{5}. \) From \(b^2 = a^2 - c^2, \ 5 = 9 - c^2 \) and \(c = 2. \) Thus
\[e = \frac{c}{a} = \frac{2}{3}. \]

38. Distance from \((x, y)\) to \((0, 0)\): \[\sqrt{(x - 0)^2 + (y - 0)^2} = \sqrt{x^2 + y^2}. \]
Distance from \((x, y)\) to \((3, 0)\): \[\sqrt{(x - 3)^2 + (y - 0)^2} = \sqrt{(x - 3)^2 + y^2}. \]
From the given condition:
\[\sqrt{x^2 + y^2} = 2\sqrt{(x - 3)^2 + y^2} \]
\[x^2 + y^2 = 4[(x - 3)^2 + y^2] \quad \text{squaring both sides} \]
\[x^2 + y^2 = 4(x^2 - 6x + 9 + y^2) \]
\[x^2 + y^2 = 4x^2 - 24x + 36 + 4y^2 \]
\[0 = 3x^2 - 24x + 36 + 3y^2 \]
\[3x^2 + 3y^2 - 24x + 36 = 0 \]
\[x^2 + y^2 - 8x + 12 = 0. \quad \text{The locus is a circle.} \]
39. We want the center of the ellipse to be at the origin with the center of the earth at one of the foci. Study the following diagram:

\[b^2 = 4100^2 - 20^2 = 16,809,600. \]

40. Let \(A \) = the maximum distance and \(P \) = the minimum distance, as shown.

\[A \] is also the distance from the left focus to the right vertex. So \(A - P \) is the distance between foci. Therefore \(\frac{1}{2}(A - P) \) is the distance from the center to the sun (the focus), or \(c = \frac{1}{2}(A - P) \).

Now \(a = c + P = \frac{1}{2}(A - P) + P = \frac{1}{2}(A + P) \) so

\[e = \frac{c}{a} = \frac{\frac{1}{2}(A - P)}{\frac{1}{2}(A + P)} = \frac{A - P}{A + P}. \]

In our problem \(e = \frac{9.46 \times 10^7 - 9.14 \times 10^7}{9.47 \times 10^7 + 9.14 \times 10^7} = 0.0172 \approx \frac{1}{60} \).

41. Let \(A \) = the maximum distance and \(P \) = the minimum distance as shown.

\(A \) is also the distance from the left focus to the right vertex. So \(A - P \) is the distance between the foci. Therefore \(\frac{1}{2}(A - P) \) is the distance from the center to the sun (the focus), or \(c = \frac{1}{2}(A - P) \).

Now \(a = c + P = \frac{1}{2}(A - P) + P = \frac{1}{2}(A + P) \). So

\[e = \frac{c}{a} = \frac{\frac{1}{2}(A - P)}{\frac{1}{2}(A + P)} = \frac{A - P}{A + P}. \]
In our problem
\[e = \frac{3.285 \times 10^9 - 5.48 \times 10^7}{3.285 \times 10^9 + 5.48 \times 10^7} = 0.967. \]

42. \[A = \pi \cdot a \cdot b = \pi \cdot 15 \cdot 12 \approx 565 \text{ ft}^2 \]

43. Since \(a = 2 \) and \(b = \frac{3}{2} \), we get
\[\frac{x^2}{4} + \frac{y^2}{\frac{9}{4}} = 1 \quad \text{or} \quad \frac{x^2}{4} + \frac{4y^2}{9} = 1, \]

and \(9x^2 + 16y^2 = 36. \)

44. From the figure, \(a = 15 \) and \(b = 5. \) From (1.17)
\[\frac{x^2}{5^2} + \frac{y^2}{15^2} = 1. \]

The next step is to find \(x \) when \(y = 10: \)
\[\frac{x^2}{25} = \frac{225}{225} - \frac{100}{225} = \frac{125}{225} \quad \text{and} \quad x^2 = \frac{5 \cdot 25 \cdot 25}{15^2} \]
So \(x = \frac{\sqrt{5} \cdot 25}{15} \) and the length of the beam is \(2x = 10 \frac{\sqrt{5}}{3} \approx 7.5 \text{ ft} \)

![Graph of an ellipse](image)

45. Placing the center at the origin, the vertices are at \((\pm 6, 0)\). The road extends from \((-4, 0)\) to \((4, 0)\). Since the clearance is \(4 \text{ m}\), the point \((4, 4)\) lies on the ellipse, as shown.

![Graph of an ellipse](image)

By (1.16),
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]
\[\frac{x^2}{36} + \frac{y^2}{b^2} = 1. \]

To find \(b \), we substitute the coordinates of \((4, 4)\) in the equation:
\[\frac{16}{36} + \frac{16}{b^2} = 1 \]
\[\frac{16}{b^2} = \frac{36 - 16}{36} = \frac{20}{36} = \frac{5}{9} \]
\[b^2 = \frac{5}{9} \frac{(9)(16)}{(3)(4)} = 12 \frac{12\sqrt{5}}{5}. \]
So the height of the arch is \(\frac{12\sqrt{5}}{5} \approx 5.4 \text{ m} \) to two significant digits.

46. Since the sun is at one of the foci, \(a - c = 12 \) (in millions of miles) when the comet is closest to the sun. From \(e = \frac{c}{a} \), we get

\[
0.99992 = \frac{c}{a} \quad \text{or} \quad c = 0.99992a.
\]

So \(a - c = a - 0.99992a = 12 \); solving, \(a = 150000 \) and \(c = 149988 \).

Farthest point: \((150000 + 149988)(100000) = 3.0 \times 10^{11} \text{ mi.}\)

1.10 The Hyperbola

1. Comparing the given equation,

\[
\frac{x^2}{16} - \frac{y^2}{9} = 1
\]

to form (1.22), we see that the transverse axis is horizontal, with \(a^2 = 16 \) and \(b^2 = 9 \). So \(a = 4 \) and \(b = 3 \). From \(b^2 = c^2 - a^2 \), we get

\[
\begin{align*}
9 & = c^2 - 16 \\
c & = \pm 5.
\end{align*}
\]

So the vertices are at \((\pm 4, 0)\) and the foci are at \((\pm 5, 0)\). Using \(a = 4 \) and \(b = 3 \), we draw the auxiliary rectangle and sketch the curve:

![Auxiliary rectangle and sketch of hyperbola](image)

2. Comparing the given equation \(\frac{x^2}{9} - \frac{y^2}{4} = 1 \) to the form (1.22), we see that the transverse axis is horizontal, with \(a^2 = 9 \) and \(b^2 = 4 \). So \(a = 3 \) and \(b = 2 \). From \(b^2 = c^2 - a^2 \), we get \(4 = c^2 - 9 \) and \(c^2 = 13 \). It follows that the vertices are at \((\pm 3, 0)\) and the foci at \((\pm \sqrt{13}, 0)\). Using \(a = 3 \) and \(b = 2 \), we draw the auxiliary rectangle and sketch the curve.

![Auxiliary rectangle and sketch of hyperbola](image)

3. \(\frac{x^2}{9} - \frac{y^2}{16} = 1 \); by Equation (1.22), the transverse axis is horizontal with \(a^2 = 9 \) and \(b^2 = 16 \).

So \(a = 3 \) and \(b = 4 \). From \(b^2 = c^2 - a^2 \), we have \(16 = c^2 - 9 \) or \(c = \pm 5 \).
1.10. THE HYPERBOLA

It follows that the vertices are at \((\pm 3, 0)\) and the foci are at \((\pm 5, 0)\). Using \(a = 3\) and \(b = 4\), we draw the auxiliary rectangle and the asymptotes, and then sketch the curve.

4. Equation: \(\frac{x^2}{16} - \frac{y^2}{4} = 1\)

By (1.22), \(a = 4\) and \(b = 2\), transverse axis horizontal. From \(b^2 = c^2 - a^2\), \(4 = c^2 - 16\) and \(c = \pm\sqrt{20} = \pm 2\sqrt{5}\). So the vertices are at \((\pm 4, 0)\) and the foci at \((\pm 2\sqrt{5}, 0)\). Using \(a = 4\) and \(b = 2\), we draw the auxiliary rectangle and sketch the curve.

5. By (1.23), \(a = 2\) and \(b = 2\), transverse axis vertical along the \(y\)-axis. From \(b^2 = c^2 - a^2\), \(4 = c^2 - 4\) and \(c = \pm\sqrt{8} = \pm 2\sqrt{2}\). So the vertices are at \((0, \pm 2)\) and the foci at \((0, \pm 2\sqrt{2})\). Using \(a = 2\) and \(b = 2\), we draw the auxiliary rectangle and sketch the curve:

6. Equation: \(\frac{y^2}{4} - \frac{x^2}{8} = 1\)

By (1.23), \(a = 2\) and \(b = \sqrt{8} = 2\sqrt{2}\), transverse axis vertical. From \(b^2 = c^2 - a^2\), \(8 = c^2 - 4\) and \(c = \pm\sqrt{12} = \pm 2\sqrt{3}\). So the vertices are at \((0, \pm 2)\) and the foci at \((0, \pm 2\sqrt{3})\). Using \(a = 2\) and \(b = 2\sqrt{2}\), we draw the auxiliary rectangle and sketch the curve.
7. \(x^2 - \frac{y^2}{5} = 1 \) transverse axis horizontal

\(a^2 = 1 \) and \(b^2 = 5 \); so \(a = 1 \) and \(b = \sqrt{5} \). From \(b^2 = c^2 - a^2 \), \(5 = c^2 - 1 \) and \(c = \pm \sqrt{6} \). Vertices: \((\pm 1, 0)\); foci: \((\pm \sqrt{6}, 0)\). Using \(a = 1 \) and \(b = \sqrt{5} \), we draw the auxiliary rectangle and sketch the curve.

8. Equation: \(9y^2 - 2x^2 = 18 \) or \(\frac{y^2}{2} - \frac{x^2}{9} = 1 \)

By (1.23), \(a = \sqrt{2} \) and \(b = 3 \), transverse axis vertical. From \(b^2 = c^2 - a^2 \), \(9 = c^2 - 2 \) and \(c = \pm \sqrt{11} \). So the vertices are at \((0, \pm \sqrt{2})\) and the foci at \((0, \pm \sqrt{11})\). Using \(a = \sqrt{2} \) and \(b = 3 \), we draw the auxiliary rectangle and sketch the curve.

9. \(2y^2 - 3x^2 = 24 \)

\(\frac{2y^2}{24} - \frac{3x^2}{24} = 1 \)

\(\frac{y^2}{12} - \frac{x^2}{8} = 1 \)

By (1.23), \(a = \sqrt{12} = 2\sqrt{3} \) and \(b = \sqrt{8} = 2\sqrt{2} \). From \(b^2 = c^2 - a^2 \), \(8 = c^2 - 12 \), so that \(c = \pm \sqrt{20} = \pm 2\sqrt{5} \). Since the transverse axis lies along the \(y \)-axis, the vertices are at \((0, \pm 2\sqrt{3})\) and the foci at \((0, \pm 2\sqrt{5})\). Using \(a = 2\sqrt{3} \) and \(b = 2\sqrt{2} \), we draw the auxiliary rectangle and sketch the curve.
10. Equation: $\frac{x^2}{6} - \frac{y^2}{6} = 1$

By (1.22), $a = \sqrt{6}$ and $b = \sqrt{6}$, transverse axis horizontal. From $b^2 = c^2 - a^2$, $6 = c^2 - 6$ and $c = \pm\sqrt{12} = \pm2\sqrt{3}$. So the vertices are at $(\pm\sqrt{6}, 0)$ and the foci at $(\pm2\sqrt{3}, 0)$. Using $a = \sqrt{6}$ and $b = \sqrt{6}$, we draw the auxiliary rectangle and sketch the curve.

11. $3y^2 - 2x^2 = 6$ or $\frac{y^2}{2} - \frac{x^2}{3} = 1$

By (1.23) the transverse axis is vertical with $a = \sqrt{2}$ and $b = \sqrt{3}$. From $b^2 = c^2 - a^2$, $3 = c^2 - 2$ or $c = \pm\sqrt{5}$.

So the vertices are at $(0, \pm\sqrt{2})$ and the foci at $(0, \pm\sqrt{3})$. Using $a = \sqrt{2}$ and $b = \sqrt{3}$, we draw the auxiliary rectangle and sketch the curve.

12. Equation: $11x^2 - 7y^2 = 77$ or $\frac{x^2}{7} - \frac{y^2}{11} = 1$

By (1.22), $a = \sqrt{7}$ and $b = \sqrt{11}$, transverse axis horizontal. From $b^2 = c^2 - a^2$, $11 = c^2 - 7$ and $c = \pm\sqrt{18} = \pm3\sqrt{2}$. So the vertices are at $(\pm\sqrt{7}, 0)$ and the foci at $(\pm3\sqrt{2}, 0)$. Using $a = \sqrt{7}$ and $b = \sqrt{11}$, we draw the auxiliary rectangle and sketch the curve.
13. Since the foci (and hence the vertices) lie on the x-axis, the transverse axis is horizontal. By (1.22),
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. \]
Since the length of the transverse axis is 4, $a = 2$, and since the length of the conjugate axis is 2, $b = 1$. It follows that
\[\frac{x^2}{4} - \frac{y^2}{1} = 1 \quad \text{and} \quad x^2 - 4y^2 = 4. \]

14. Since the foci (and hence the vertices) lie on the y-axis, the transverse axis is vertical. By (1.23), \[\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1. \] Since the length of the transverse axis is 4, $a = 2$, and since the length of the conjugate axis is 8, $b = 4$. It follows that
\[\frac{y^2}{4} - \frac{x^2}{16} = 1 \quad \text{or} \quad 4y^2 - x^2 = 16. \]

15. Since the foci (and hence the vertices) lie on the y-axis, the form is
\[\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1. \]
Since the length of the transverse axis is 8, $a = 4$, while $c = 6$. From $b^2 = c^2 - a^2$, we get $b^2 = 36 - 16 = 20$. So the equation is
\[\frac{y^2}{16} - \frac{x^2}{20} = 1. \]

16. Since the foci (and hence the vertices) lie on the x-axis, the transverse axis is horizontal and the form is
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. \]
Since the length of the transverse axis is 6, $a = 3$, while $c = 4$. From $b^2 = c^2 - a^2$, we get $b^2 = 16 - 9 = 7$. So the equation is
\[\frac{x^2}{9} - \frac{y^2}{7} = 1 \quad \text{or} \quad 7x^2 - 9y^2 = 63. \]

17. Since the vertices lie on the x-axis, the form is
\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. \]
The conjugate axis of length 8 implies that $b = 4$ and the position of the vertices imply that $a = 4$.
\[\text{Equation:} \quad \frac{x^2}{16} - \frac{y^2}{16} = 1 \quad \text{or} \quad x^2 - y^2 = 16. \]

18. Since the vertices are on the y-axis, the form is
\[\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1. \]
Since $a = 5$ and $b = 6$, the equation is
\[\frac{y^2}{25} - \frac{x^2}{36} = 1. \]
19. Since the vertices are on the y-axis, the form is

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1.$$

Since $a = 5$ and $c = 7$, we get $b^2 = c^2 - a^2 = 49 - 25 = 24$. Thus

$$\frac{y^2}{25} - \frac{x^2}{24} = 1.$$

20. Since the foci lie on the y-axis, the transverse axis is vertical. By (1.23)

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1.$$

Since the length of the conjugate axis is 8, $b = 4$. The foci are at $(0, \pm 5)$, so that $c = 5$. From $b^2 = c^2 - a^2$, we have $16 = 25 - a^2$ and $a^2 = 9$.

Equation: $\frac{y^2}{9} - \frac{x^2}{16} = 1$ or $16y^2 - 9x^2 = 144$.

21. Since the foci are on the x-axis, the form is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Since the length of the conjugate axis is 10, $b = 5$, while $c = 6$. From $b^2 = c^2 - a^2$, we get $a^2 = c^2 - b^2 = 36 - 25 = 11$. So the equation is

$$\frac{x^2}{11} - \frac{y^2}{25} = 1.$$

22. Start with Eq. (1.19):

$$\sqrt{(x - c)^2 + y^2} - \sqrt{(x + c)^2 + y^2} = \pm 2a$$

$$\sqrt{(x - c)^2 + y^2} = \pm 2a + \sqrt{(x + c)^2 + y^2}$$

isolating the radical

$$(x - c)^2 + y^2 = 4a^2 \pm 4a\sqrt{(x + c)^2 + y^2} + (x + c)^2 + y^2$$

squaring both sides

$$x^2 - 2cx + c^2 + y^2 = 4a^2 \pm 4a\sqrt{(x + c)^2 + y^2} + x^2 + 2cx + c^2 + y^2$$

$$-4cx - 4a^2 = \pm 4a\sqrt{(x + c)^2 + y^2}$$

collecting terms

$$cx + a^2 = \pm a\sqrt{(x + c)^2 + y^2}$$

$$c^2x^2 + 2ca^2x + a^4 = a^2(x^2 + 2cx + c^2 + y^2)$$

squaring both sides

$$c^2x^2 + 2ca^2x + a^4 = a^2x^2 + 2ca^2x + a^2c^2 + a^2y^2$$

$$c^2x^2 - a^2x^2 - a^2y^2 = a^2c^2 - a^4$$

collecting terms

$$(c^2 - a^2) x^2 - a^2y^2 = a^2(c^2 - a^2)$$

factoring

$$\frac{x^2}{a^2} - \frac{y^2}{c^2 - a^2} = 1$$

dividing by $a^2(c^2 - a^2)$

23. By the original derivation of the equation of the hyperbola, $2a = 6$ and $a = 3$. Since $(0, \pm 5)$ are the foci, $c = 5$. Thus $b^2 = 25 - 9 = 16$. By (1.23)

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

$$\frac{y^2}{9} - \frac{x^2}{16} = 1 \text{ or } 16y^2 - 9x^2 = 144.$$
24. Since the foci are at \((\pm 3,0)\), we know that \(c = 3\) and the transverse axis is horizontal. From Eq. (1.21), \(y = \pm \frac{b}{a} x = \pm \frac{4}{3} x\) and \(\frac{b}{a} = \frac{4}{3}\). So we get \(b = \frac{4}{3}a\); from \(b^2 = c^2 - a^2\), we get
\[
\frac{16}{9} a^2 = 9 - a^2 \\
\frac{25}{9} a^2 = 9 \\
\frac{a^2}{81/25} = \frac{81}{9/25} \quad \text{and} \quad b^2 = \frac{16}{9} \cdot \frac{81}{25} = \frac{9 \cdot 16}{25} = \frac{144}{25}.
\]
By (1.22), \(\frac{y^2}{81/25} - \frac{x^2}{144/25} = 1\) or \(\frac{25x^2}{81} - \frac{25y^2}{144} = 1\).

25. By (1.23), the equation has the form \(\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1\). Since \(a = 12\), we have
\[
\frac{y^2}{144} - \frac{x^2}{b^2} = 1.
\]
To find \(b\), we substitute the coordinates of \((-1,13)\) in the last equation:
\[
\frac{169}{144} - \frac{1}{b^2} = 1 \\
\frac{1}{b^2} = \frac{144}{144} - \frac{169}{144} = \frac{25}{144}.
\]
Thus \(b^2 = \frac{144}{25}\). The equation is
\[
\frac{y^2}{144} - \frac{x^2}{144/25} = 1 \quad \text{or} \quad \frac{y^2}{144} - \frac{25x^2}{144} = 1.
\]

26.

27. \(pV = k\)
\[(12)(3.0) = k \quad V = 3.0 \, \text{m}^3, \, p = 12 \, \text{Pa}\)
So \(pV = 36\). (See graph in answer section of book.)

28. \(b^2 = c^2 - a^2\)
\[33 = c^2 - 16\]
\[c = \pm 7\]
So the reflected ray crosses the \(x\)-axis at \(x = -7\).

1.11 Translation of Axes; Standard Equations of the Conics

1. Circle, center at \((1,2)\), \(r = \sqrt{3}\).

2. The equation may be viewed as the ellipse \(\frac{x^2}{9} + \frac{y^2}{5} = 1\) rigidly translated from its position with center at the origin to the center at \((1,2)\).
3. \((y + 3)^2 = 8(x - 2)\)
\((y + 3)^2 = 4(2)(x - 2)\) \quad \text{\(p = 2\)}

Vertex at \((2, -3)\), focus at \((2 + 2, -3) = (4, -3)\).

4. The equation may be viewed as the hyperbola \(\frac{x^2}{4} - \frac{y^2}{9} = 1\) rigidly translated from its position with center at the origin to center at \((3, 0)\).

5. \(2x^2 - 3y^2 + 8x - 12y + 14 = 0\)
\(2x^2 + 8x - 3y^2 - 12y + 14 = 0\)
\(2(x^2 + 4x) - 3(y^2 + 4y) = -14\) \quad \text{factoring 2 and -3}

Note that the square of one-half the coefficient of \(x\) and \(y\) is \(\left(\frac{1}{2} \cdot 4\right)^2 = 4\).

Inserting these values inside the parentheses and balancing the equation, we get
\[2(x^2 + 4x + \frac{4}{4}) - 3(y^2 + 4y + \frac{4}{4}) = -14 + 2 \cdot \frac{4}{4} - 3 \cdot \frac{4}{4}\]
\[2(x + 2)^2 - 3(y + 2)^2 = -18\]
\[\frac{3(y + 2)^2}{6} - \frac{2(x + 2)^2}{9} = 1\]
\[\frac{18}{6} - \frac{18}{9} = 1\]

The equation represents a hyperbola with transverse axis vertical. Center: \((-2, -2)\),
\(a = \sqrt{6}, \quad b = 3\).
6. \(4x^2 - 4x - 48y + 193 = 0\)

\[
\begin{align*}
4x^2 - 4x &= 48y - 193 \\
x^2 - x &= 12y - \frac{193}{4} \quad \text{dividing by 4}
\end{align*}
\]

Adding \(\left(\frac{1}{2} - 1\right)\) to each side,

\[
\begin{align*}
x^2 - x + \frac{1}{4} &= 12y - \frac{193}{4} + \frac{1}{4} = 12y - 48 \\
\left(x - \frac{1}{2}\right)^2 &= 12(y - 4) \\
\left(x - \frac{1}{2}\right)^2 &= 4(3)(y - 4) \quad p = 3
\end{align*}
\]

This is the equation of a parabola with vertex at \((\frac{1}{2}, 4)\). Since \(p = 3\), the focus is at \(\left(\frac{1}{2}, 4 + 3\right) = \left(\frac{1}{2}, 7\right)\).

7. \(16x^2 + 4y^2 + 64x - 12y + 57 = 0\)

\[
\begin{align*}
16x^2 + 64x + 4y^2 - 12y + 57 &= 0 \\
16(x^2 + 4x) + 4(y^2 - 3y) &= -57 \quad \text{factoring 16 and 4}
\end{align*}
\]

Note that

\[
\begin{align*}
\left(\frac{1}{2} \cdot 4\right)^2 &= 4 \quad \text{and} \quad \left[\frac{1}{2}(-3)\right]^2 = \frac{9}{4}
\end{align*}
\]

Inserting these values inside the parentheses and balancing the equation, we get

\[
\begin{align*}
16(x^2 + 4x + 4) + 4(y^2 - 3y + \frac{9}{4}) &= -57 + 16 \cdot 4 + 4\left(\frac{9}{4}\right) \\
16(x + 2)^2 + 4(y - \frac{3}{2})^2 &= 16 \\
\frac{(x + 2)^2}{4} + \frac{(y - 3/2)^2}{1} &= 1.
\end{align*}
\]

The equation represents an ellipse with major axis vertical. Center: \((-2, \frac{3}{2})\), \(a = 2\), \(b = 1\).
8. $y^2 - 12y - 5x + 41 = 0$
 $y^2 - 12y = 5x - 41$
 Adding $\left[\frac{1}{2}(-12) \right]^2 = 36$ to each side,

 \[
 y^2 - 12y + 36 = 5x - 41 + 36
 \]

 \[
 (y - 6)^2 = 5x - 5 = 5(x - 1) \quad \text{factoring}
 \]

 \[
 (y - 6)^2 = 4 \cdot \frac{5}{4}(x - 1) \quad p = \frac{5}{4}
 \]

 This is a parabola with vertex at $(1, 6)$ and focus at \(\left(1 + \frac{5}{4}, 6 \right) = \left(\frac{9}{4}, 6 \right) \).

9. $x^2 + y^2 + 2x - 2y + 2 = 0$
 $x^2 + 2x + y^2 - 2y = -2$
 \[
 (x^2 + 2x + 1) + (y^2 - 2y + 1) = -2 + 1 + 1
 \]

 \[
 (x + 1)^2 + (y - 1)^2 = 0
 \]

 Point: $(-1, 1)$.

10. $x^2 + 2y^2 - 6x + 4y + 1 = 0$
 $x^2 - 6x + 2y^2 + 4y = -1$
 $x^2 - 6x + 2(y^2 + 2y) = -1$ \quad \text{factoring}

 Add \(\left[\frac{1}{2}(-6) \right]^2 = 9 \) and \(\left[\frac{1}{2}(2) \right]^2 = 1 \) to each side (inside the parentheses):

 \[
 x^2 - 6x + 9 + 2(y^2 + 2y + 1) = -1 + 9 + 2(1)
 \]

 \[
 (x - 3)^2 + 2(y - 1)^2 = 10
 \]

 \[
 \frac{(x - 3)^2}{10} + \frac{(y + 1)^2}{5} = 1
 \]
Ellipse, center at $(3, -1)$ with $a = \sqrt{10}$ and $b = \sqrt{5}$.

11. $2x^2 - 12y^2 + 60y - 63 = 0$

 $2x^2 - 12(y^2 - 5y) = 63$

 The square of one-half the coefficient of y is $\left(\frac{1}{2}(-5)\right)^2 = \frac{25}{4}$. Inserting this number inside the parentheses, we get

 $2x^2 - 12(y^2 - 5y + \frac{25}{4}) = 63 - 12(\frac{25}{4}) = -12$

 $x^2 - 6(y^2 - 5y + \frac{25}{4}) = -6$

 $x^2 - 6(y - \frac{5}{2})^2 = -6$

 $(y - \frac{5}{2})^2 - \frac{x^2}{6} = 1.$

Hyperbola, center at $(0, \frac{5}{2})$, transverse axis vertical with $a = 1$ and $b = \sqrt{6}$.

12. $2x^2 + 3y^2 - 8x - 18y + 35 = 0$

 $2x^2 - 8x + 3y^2 - 18y = -35$

 $2(x^2 - 4x) + 3(y^2 - 6y) = -35$

 Observe that $\left(\frac{1}{2}(-4)\right)^2 = 4$ and $\left(\frac{1}{2}(-6)\right)^2 = 9$. Inserting these values inside the parentheses and balancing the equation, we get

 $2(x^2 - 4x + 4) + 3(y^2 - 6y + 9) = -35 + 2(4) + 3(9)$

 $2(x - 2)^2 + 3(y - 3)^2 = 0$

 Single point $(2, 3)$.

13. $64x^2 + 64y^2 - 16x - 96y - 27 = 0$

 $64x^2 - 16x + 64y^2 - 96y - 27 = 0$

 $64(x^2 - \frac{x}{4}) + 64(y^2 - \frac{3y}{4}) = 27$

 $64(x^2 - \frac{x}{4} + \frac{1}{64}) + 64(y^2 - \frac{3y}{2} + \frac{9}{16}) = 27 + 1 + 36$

 $64(x - \frac{1}{8})^2 + 64(y - \frac{3}{4})^2 = 64$

 $(x - \frac{1}{8})^2 + (y - \frac{3}{4})^2 = 1.$

 Circle of radius 1 centered at $\left(\frac{1}{8}, \frac{3}{4}\right)$.
14. \(4x^2 - 4x - 16y + 5 = 0\)
\[4x^2 - 4x = 16y - 5\]
\[x^2 - x = 4y - \frac{5}{4}\] dividing by 4
Add \(\left[\frac{1}{2}(1)\right]^2 = \frac{1}{4}\) to each side:

\[x^2 - x + \frac{1}{4} = 4y - \frac{5}{4} + \frac{1}{4} = 4y - 1\]
\[
\left(x - \frac{1}{2}\right)^2 = 4\left(y - \frac{1}{4}\right) \quad \text{factoring}
\]
\[
\left(x - \frac{1}{2}\right)^2 = 4(1)\left(y - \frac{1}{4}\right) \quad p = 1
\]
Parabola with vertex at \(\left(\frac{1}{2}, \frac{1}{4}\right)\) and focus at \(\left(\frac{1}{2}, \frac{1}{4} + 1\right) = \left(\frac{1}{2}, \frac{5}{4}\right)\).

15. \(3x^2 + y^2 - 18x + 2y + 29 = 0\)
\[3x^2 - 18x + y^2 + 2y = -29\]
\[3(x^2 - 6x) + (y^2 + 2y) = -29\]
Observe that \(\left[\frac{1}{2}(-6)\right]^2 = 9\) and \(\frac{1}{2} \cdot 2\) = 1. Adding these values inside the parentheses and balancing the equation, we get
\[3(x^2 - 6x + 9) + (y^2 + 2y + 1) = -29 + 3 \cdot 9 + 1\]
\[3(x - 3)^2 + (y + 1)^2 = -1\]
which is an imaginary locus.

16. \(100x^2 - 180x - 100y + 81 = 0\)
\[100x^2 - 180x = 100y - 81\]
\[x^2 - \frac{9}{5}x = y - \frac{81}{100}\]
Add \(\left[\frac{1}{2}(\frac{-9}{5})\right]^2 = \frac{81}{100}\) to each side:

\[x^2 - \frac{9}{5}x + \frac{81}{100} = y\]
\[
\left(x - \frac{9}{10}\right)^2 = 4 \cdot \frac{1}{4} y \quad p = \frac{1}{4}
\]
Parabola, vertex at \(\left(\frac{9}{10}, 0\right)\), focus at \(\left(\frac{9}{10}, \frac{1}{4}\right)\).
17. \(x^2 + 2x - 12y + 25 = 0 \)

\[
x^2 + 2x = 12y - 25
\]

We add to each side of the equation the square of one-half the coefficient of \(x \), \(\left(\frac{1}{2} \cdot 2 \right)^2 = 1 \):

\[
\begin{align*}
x^2 + 2x + 1 &= 12y - 25 + 1 \\
(x + 1)^2 &= 12y - 24 \\
(x + 1)^2 &= 12(y - 2)
\end{align*}
\]

\[
(x + 1)^2 = 4 \cdot 3(y - 2), \quad p = +3
\]

Vertex at \((-1, 2)\), focus at \((-1, 5)\).

18. \(2x^2 - y^2 - 8x - 2y + 3 = 0 \)

\[
\begin{align*}
2x^2 - 8x - y^2 - 2y &= -3 \\
2(x^2 - 4x) - (y^2 + 2y) &= -3 \quad \text{factoring}
\end{align*}
\]

Observe that \(\left(\frac{1}{2}(-4) \right)^2 = 4 \) and \(\left(\frac{1}{2}(2) \right)^2 = 1 \). Inserting these values inside the parentheses and balancing the equation, we get

\[
\begin{align*}
2(x^2 - 4x + 4) - (y^2 + 2y + 1) &= -3 + 2(4) - 1 \\
2(x - 2)^2 - (y + 1)^2 &= 4 \\
\frac{(x - 2)^2}{4} - \frac{(y + 1)^2}{4} &= 1 \quad \text{dividing by 4}
\end{align*}
\]

Hyperbola, center at \((2, -1)\).
19. \[x^2 + 2y^2 + 6x - 4y + 9 = 0 \]
\[x^2 + 6x + 2y^2 - 4y = -9 \]
\[(x^2 + 6x + 9) + 2(y^2 - 2y + 1) = -9 \]
Adding \(\left[\frac{1}{2} (6) \right]^2 = 9 \) and \(\left[\frac{1}{2} (-2) \right]^2 = 1 \) inside the parentheses and balancing the equation, we have
\[(x + 3)^2 + 2(y - 1)^2 = 2 \]
\[\frac{(x + 3)^2}{2} + (y - 1)^2 = 1. \]
Ellipse, center at \((-3, 1)\) with \(a = \sqrt{2}\) and \(b = 1\).

20. \[y^2 + 2y - 12x + 49 = 0 \]
\[y^2 + 2y = 12x - 49 \]
Add \(\left[\frac{1}{2} (1) \right]^2 = 1 \) to each side:
\[y^2 + 2y + 1 = 12x - 49 + 1 = 12x - 48 \]
\[(y + 1)^2 = 12(x - 4) \quad \text{factoring} \]
\[(y + 1)^2 = 4(3)(x - 4) \quad p = 3 \]
Parabola, vertex at \((4, -1)\), focus at \((4 + 3, -1) = (7, -1)\).

21. \[x^2 + 4x + 4y + 16 = 0 \]
\[x^2 + 4x = -4y - 16 \]
We add to each side \(\left[\frac{1}{2} \cdot 4 \right]^2 = 4: \)
\[x^2 + 4x + 4 = -4y - 16 + 4 \]
\[(x + 2)^2 = -4y - 12 \]
\[(x + 2)^2 = -4(y + 3) \]
\[(x + 2)^2 = 4(-1)(y + 3), \quad p = -1 \]
CHAPTER 1. INTRODUCTION TO ANALYTIC GEOMETRY

22. \[3y^2 - 2x^2 - 18y - 8x + 7 = 0 \]
\[3y^2 - 18y - 2x^2 - 8x = -7 \]
\[3(y^2 - 6y) - 2(x^2 + 4x) = -7 \]
Observe that \[\left(\frac{1}{2}(-6) \right)^2 = 9 \] and \[\left(\frac{1}{2}(4) \right)^2 = 4 \]. Inserting these values inside the parentheses and balancing the equation, we get

\[3(y^2 - 6y + 9) - 2(x^2 + 4x + 4) = -7 + 3(9) - 2(4) \]
\[3(y - 3)^2 - 2(x + 2)^2 = 12 \]
\[\frac{(y - 3)^2}{4} - \frac{(x + 2)^2}{6} = 1 \]

Hyperbola, center at \((-2, 3)\).

23. \[x^2 + 2y^2 - 4x + 12y + 14 = 0 \]
\[x^2 - 4x + 2y^2 + 12y = -14 \]
\[(x^2 - 4x) + 2(y^2 + 6y) = -14 \] factoring
Observe that \[\left(\frac{1}{2}(-4) \right)^2 = 4 \] and \[\left(\frac{1}{2}(6) \right)^2 = 9 \]. Inserting these values inside the parentheses and balancing the equation, we get

\[(x^2 - 4x + 4) + 2(y^2 + 6y + 9) = -14 + 4 + 2 \cdot 9 \]
\[(x - 2)^2 + 2(y + 3)^2 = 8 \]
\[\frac{(x - 2)^2}{8} + \frac{(y + 3)^2}{4} = 1 \].

Ellipse, center at \((2, -3)\).
24. \(x^2 + 4y^2 + 6x + 24y + 41 = 0 \)
\(x^2 + 6x + 4y^2 + 24y = -41 \)
\(x^2 + 6x + 4(y^2 + 6y) = -41 \)
Insert \(\left(\frac{1}{2} \right)^2 = 9 \) and balance the equation:
\[
(x^2 + 6x + 9) + 4(y^2 + 6y + 9) = -41 + 9 + 4(9)
\]
\[
(x + 3)^2 + 4(y + 3)^2 = 4
\]
\[
\frac{(x + 3)^2}{4} + \frac{(y + 3)^2}{1} = 1
\]
Ellipse, center at \((-3, -3)\) with \(a = 2\) and \(b = 1\).

25.

Distance from vertex to focus: \(3 - (-1) = 4\). Thus \(p = 4\). Since the axis is horizontal, the form of the equation is \((y - k)^2 = 4p(x - h)^2\). Thus
\[
(y - 2)^2 = 4 \cdot 4(x + 1)
\]
\[
(h, k) = (-1, 2), \ p = 4
\]
\[
(y - 2)^2 = 16(x + 1).
\]
27. y = 6

(3,3) \text{• vertex}

The distance from the vertex to the focus is 3, with the focus below the vertex; so $p = -3$.

Since the axis is vertical, the form of the equation is

$$ (x - h)^2 = 4p(y - k) $$

$$ (x - 2)^2 = 4(3)(y - 2) \quad (h, k) = (2, 2) $$

$$ (x - 2)^2 = 12(y - 2) $$

28. Form: $(y - k)^2 = 4p(x - h)$; Axis horizontal

Since the focus is 2 units to the left of the vertex, $p = -2$. Equation: $(y + 2)^2 = -8(x - 5)$.

29. (0,0) \text{• vertex}

Since the center is at $(-3, 0)$, we get for the equation

$$ \frac{(x + 3)^2}{9} + \frac{y^2}{4} = 1 \quad a = 3, \ b = 2 $$
30. Center at \((3, -2)\) [midway between the vertices]. Distance from center to a vertex is 3, so \(a = 3\). Distance from center to focus is 2, so \(c = 2\).

\[
b^2 = a^2 - c^2 = 9 - 4 = 5
\]

Form: \(\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1\) major axis vertical

Equation: \(\frac{(x-3)^2}{5} + \frac{(y+2)^2}{9} = 1\) \((h,k) = (3, -2)\)

31.

Major axis vertical: \(\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1\). From the diagram: \(a = 3\) and \(c = 1\); so \(b^2 = a^2 - c^2 = 9 - 1 = 8\); center: \((-4,1)\).

Equation: \(\frac{(x+4)^2}{8} + \frac{(y-1)^2}{9} = 1\)

32.

Major axis horizontal: \(\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1\) (form)

From the diagram: \(a = 6\) and \(b = 1\). Center: \((-1, -1)\).

Equation: \(\frac{(x+1)^2}{36} + (y+1)^2 = 1\).
33. \[\begin{align*} \text{Distance between vertices is 8, so that } a &= 4. \text{ Center: } (-3, 1) \text{ (point midway between vertices).} \\
\text{Distance from center to one focus is 6, so that } c &= 6. \text{ The transverse axis is horizontal, resulting in the form} \\
\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} &= 1. \\
\text{Since } b^2 = c^2 - a^2 = 36 - 16 = 20, \text{ we get} \\
\frac{(x + 3)^2}{16} - \frac{(y - 1)^2}{20} &= 1. \quad \text{ }(h, k) = (-3, 1) \end{align*} \]

34. \[\begin{align*} \text{Distance from center to one focus is } 3, \text{ so } c &= 3. \text{ Conjugate axis } 4, \text{ so } b = 2. \\
\text{Form: } \frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} &= 1 \quad \text{Transverse axis horizontal} \\
\text{From: } b^2 = c^2 - a^2, \text{ we have } 4 = 9 - a^2 \text{ or } a^2 = 5. \\
\text{Equation: } \frac{(x + 1)^2}{5} - \frac{(y + 2)^2}{4} &= 1 \end{align*} \]

35. Transverse axis vertical: \[\begin{align*} \frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} &= 1 \quad \text{(form)} \\
\text{Distance from center to focus: } 8, \text{ so } c &= 8. \text{ Since } a = 6, \text{ we have } b^2 = c^2 - a^2 = 64 - 36 = 28. \\
\text{Equation: } \frac{(y + 4)^2}{36} - \frac{(x - 3)^2}{28} &= 1 \end{align*} \]

36. \[\begin{align*} \text{Distance between vertices is 8, so that } a &= 4. \text{ Center: } (-3, 1) \text{ (point midway between vertices).} \\
\text{Distance from center to one focus is 6, so that } c &= 6. \text{ The transverse axis is horizontal, resulting in the form} \\
\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} &= 1. \\
\text{Since } b^2 = c^2 - a^2 = 36 - 16 = 20, \text{ we get} \\
\frac{(x + 3)^2}{16} - \frac{(y - 1)^2}{20} &= 1. \quad \text{ }(h, k) = (-3, 1) \end{align*} \]
1.11. **Translation of Axes; Standard Equations of the Conics**

Form: \(\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \)

Center: \((-1, -2), a = 3, c = 5\)

\[b^2 = c^2 - a^2 = 25 - 9 = 16 \]

Equation: \(\frac{(y + 2)^2}{9} - \frac{(x + 1)^2}{16} = 1 \)

37.

\((-3, 3)\) vertex \((2, 3)\) center

\((h, k) = (2, 3); a = 2 - (-3) = 5\) (distance from center to vertex);

\(b = 2\) (length of minor axis is 4).

Form: \(\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1. \) major axis horizontal

Resulting equation: \(\frac{(x - 2)^2}{25} + \frac{(y - 3)^2}{4} = 1. \) \((h, k) = (2, 3)\)

38. Form: \((y - k)^2 = 4(p)(x - h)\) Axis horizontal

Focus: 3 units to the right of the vertex, so \(p = 3\)

Equation: \((y + 4)^2 = 4(3)(x - 5)\) or \((y + 4)^2 = 12(x - 5)\)

39. Form: \(\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1. \)

Distance from center to vertex is 2, so that \(a = 2.\) From \(x - 2y = 1, y = \frac{1}{2}x - \frac{1}{2}.\) So the slope \(m\) of one of the asymptotes is \(\frac{1}{2}.\) But \(m = \frac{b}{a}.\) Thus \(\frac{1}{2} = \frac{b}{a} = \frac{a}{2}\) or \(b = 1.\) The equation is

\[\frac{(x - 1)^2}{4} - \frac{y^2}{1} = 1. \) \((h, k) = (1, 0)\)

40. Form: \((x + 1)^2 = 4(p)(y - 3)\) Axis vertical

The coordinates of the origin \((0, 0)\) satisfy the equation:

\((0 + 1)^2 = 4(p)(0 - 3)\) or \(4p = -\frac{1}{3}\)

Equation: \((x + 1)^2 = -\frac{1}{3}(y - 3)\)

The form \((y - 3)^2 = 4p(x + 1)\) Axis horizontal

leads to \((y - 3)^2 = 9(x + 1)\)

41.

\((-3, 6)\) vertex \((-3, -3)\) center

\(a = 5\)

\((-3, 1)\) center

\(c = 4\)

\[b^2 = a^2 - c^2 = 25 - 16 = 9 \]
\[
\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1 \quad \text{major axis vertical}
\]
\[
\frac{(x+3)^2}{9} + \frac{(y-1)^2}{25} = 1
\]

42.

Since \((4,0)\) is the center, we can read off \(c = 4\) and \(b = 3\).

From \(b^2 = c^2 - a^2\), we get \(9 = a^2 - 16\) or \(a^2 = 25\).

Form: \[\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1\] Major axis horizontal

Equation: \[\frac{(x-4)^2}{25} + \frac{y^2}{9} = 1\] \((h,k) = (4,0)\)

43. Distance from vertex to focus: \(4 - 1 = 3\). Since the focus is to the left of the vertex, \(p = -3\).

Form:
\[
(y-k)^2 = 4p(x-h) \quad \text{axis horizontal}
\]
\[
(y-k)^2 = -12(x-h). \quad \text{ } p = -3
\]
Equation: \((y+2)^2 = -12(x-4)\). \((h,k) = (4,-2)\)

44.

Distance from center to one focus is 4, so \(c = 4\)

Distance from center to one vertex is 3, so \(a = 3\)

Also \(b^2 = c^2 - a^2 = 16 - 9 = 7\)

Form: \[\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1\] Transverse axis horizontal

Equation: \[\frac{(x-3)^2}{9} - \frac{(y-1)^2}{7} = 1\]

45. Since the vertex is midway between the focus and directrix, its coordinates are \((-2,-4)\). Since \(p = -4\), we have
\[
(x+2)^2 = 4\cdot(-4)(y+4)
\]
\[
(x+2)^2 = -16(y+4).
\]
46. Distance from center to one focus is 3, so \(c = 3 \)
Major axis is 8, so \(a = 4 \)
Also, \(b^2 = a^2 - c^2 = 16 - 9 = 7 \)
Form: \[
\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1 \quad \text{Major axis vertical}
\]
Equation: \[
\frac{(x-1)^2}{7} + \frac{(y-1)^2}{16} = 1
\]

47. \((h,k) = (-1,1); a = 3 - 1 = 2 \) (distance from center to vertex);
\(c = 1 - (-2) = 3 \) (distance from center to focus); \(b^2 = c^2 - a^2 = 9 - 4 = 5 \).
Form: \[
\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1. \quad \text{transverse axis vertical}
\]
Equation: \[
\frac{(y-1)^2}{4} - \frac{(x+1)^2}{5} = 1. \quad (h,k) = (-1,1)
\]

48. \[y = 0.1x(20 - x)\]
\[y = 2x - 0.1x^2\]
\[10y = 20x - x^2 \] (multiply by 10)
\[x^2 - 20x = -10y\]
\[x^2 - 20x + 100 = -10y + 100 \] add \(\left[\frac{1}{2}(-20)\right]^2 \) to each side
\[(x - 10)^2 = -10(y - 10)\]
Vertex: \((10,10)\); Maximum height: 10 units.

49. Multiply both sides of the given equation by \(\frac{81}{x} \) and then multiply out the right side:
\[\frac{81}{x}y = -x^2 + 16x + 17\]
\[x^2 - 16x = -\frac{81}{x}y + 17\]
\[x^2 - 16x + 64 = -\frac{81}{x}y + 17 + 64 \] add \(\left[\frac{1}{2}(-16)\right]^2 \) to each side
\[(x-8)^2 = -\frac{81}{x}(y - 5)\]
Vertex: \((8,5)\); maximum height: 5 units.
Chapter 1 Review

1. Slope of line segment joining (3, 10) and (7, 4): $\frac{-3}{2}$.
 Slope of line segment joining (4, 2) and (7, 4): $\frac{2}{3}$.
 Since the slopes are negative reciprocals, the line segments are perpendicular.

2. Midpoint of line segment: \[
\left(\frac{1}{2} (-1 + 5), \frac{1}{2} (-2 + 4)\right) = (2,1)
\]
 Slope of line segment: \[
\frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - (-2)}{5 - (-1)} = \frac{6}{6} = 1
\]
 Slope of perpendicular: -1
 Equation of bisector: \[
y - 1 = (-1)(x - 2) \text{ or } x + y = 3
\]

3. $C = \frac{5}{9}(F - 32)$
 By assumption $C = F$,
 \[
 F = \frac{5}{9}(F - 32)
 F = \frac{5}{9}F - \frac{160}{9}
 F - \frac{5}{9}F = -\frac{160}{9}
 \frac{4}{9}F = -\frac{160}{9}
 F = -40^{\circ}.
\]

4. Freezing point of water

5. Slope of line segment joining (−1, 5) and (3, 9): 1.
 Slope of line segment joining (3, 1) and (7, 5): 1.
 Slope of line segment joining (−1, 5) and (3, 1): −1.
 Slope of line segment joining (3, 9) and (7, 5): −1.
 Since opposite sides are parallel, the figure is a parallelogram. Moreover, since the line segment joining (−1, 5) and (3, 1) is perpendicular to the line segment joining (−1, 5) and (3, 9), the figure must be a rectangle. Finally:
 Length of line segment joining (−1, 5) and (3, 1) = $4\sqrt{2}$.
 Length of line segment joining (−1, 5) and (3, 9) = $4\sqrt{2}$.
 Thus the figure is a square.

6. Solving $x + 2y - 5 = 0$ for y, we have $y = -\frac{1}{2}x + \frac{5}{2}$, whose slope is $-\frac{1}{2}$.
 Slope of perpendicular: 2
 Equation of the line: $y - 1 = 2(x - 4) \text{ or } 2x - y - 7 = 0$

7. $3x + y = 3$
 \[
y = -3x + 3 \quad y = mx + b
 \]
 Since $m = -3$, we get
 \[
y - 5 = -3(x + 1) \quad y - y_1 = m(x - x_1)
 3x + y - 2 = 0.
\]

8. Writing the lines in slope-intercept form:
 \[
y = 4x - 7, \quad y = -\frac{1}{4}x + \frac{1}{4}, \quad y = -2x
 \]
 The first two lines are perpendicular (and none are parallel).

9. $x^2 = (1 - 0)^2 + (-2 - 0)^2 = 1 + 4 = 5$. We now get
 \[
 (x - 1)^2 + (y + 2)^2 = 5 \text{ or } x^2 + y^2 - 2x + 4y = 0.
\]
10. \(r = \text{distance from the center to the } x\text{-axis} = 5 \)
\((x - 2)^2 + (y - 5)^2 = 5^2 \) or \(x^2 + y^2 - 4x - 10y + 4 = 0 \)

11.
\[
\begin{align*}
x^2 + y^2 + 2x + 2y &= 0 \\
x^2 + 2x + y^2 + 2y &= 0 \\
(x^2 + 2x + 1) + (y^2 + 2y + 1) &= 1 + 1 \\
(x + 1)^2 + (y + 1)^2 &= 2
\end{align*}
\]
Center: \((-1, -1); \quad r = \sqrt{2}\).

12. Write the equation in standard form:
\[
\begin{align*}
x^2 + y^2 - 10x - 8y + 16 &= 0 \\
x^2 - 10x + y^2 - 8y &= -16
\end{align*}
\]
Adding \(\left[\frac{1}{2}(-10)\right]^2 = 25\) and \(\left[\frac{1}{2}(-8)\right]^2 = 16\) to each side we get
\[
\begin{align*}
x^2 - 10x + 25 + y^2 - 8y + 16 &= -16 + 25 + 16 \\
(x - 5)^2 + (y - 4)^2 &= 25
\end{align*}
\]
Center: \((5, 4)\), radius: 5. So the center is 5 units from the \(y\)-axis.

13. Ellipse, major axis vertical, \(a = 4, \quad b = 3\). From \(b^2 = a^2 - c^2\),
\[
\begin{align*}
9 &= 16 - c^2 \\
c &= \pm \sqrt{7}.
\end{align*}
\]
Vertices: \((0, \pm 4)\); foci: \((0, \pm \sqrt{7})\). (See sketch in answer section of book.)

14. \(x^2 + 4y^2 = 1\) or \(x^2 + \frac{y^2}{1/4} = 1\)

Ellipse, \(a = 1, \quad b = \frac{1}{2}\), major axis horizontal
\[
\begin{align*}
b^2 &= a^2 - c^2 \\
\frac{1}{4} &= 1 - c^2 \\
c &= \pm \frac{\sqrt{3}}{2}
\end{align*}
\]
Vertices: \((\pm 1, 0)\), foci: \(\left(\pm \frac{\sqrt{3}}{2}, 0\right)\)

15. \(\frac{y^2}{4} - \frac{x^2}{7} = 1\)

Hyperbola, transverse axis vertical with \(a = 2\) and \(b = \sqrt{7}\). From \(b^2 = c^2 - a^2, \quad 7 = c^2 - 4\) and \(c = \pm \sqrt{11}\). So the vertices are at \((0, \pm 2)\) and the foci are at \((0, \pm \sqrt{11})\). Using \(a = 2\) and \(b = \sqrt{7}\), we draw the auxiliary rectangle and sketch the curve.
16. \(\frac{x^2}{9} - \frac{y^2}{16} = 1 \)

Hyperbola, \(a = 3, b = 4 \), transverse axis horizontal

\[
\begin{align*}
 b^2 &= c^2 - a^2 \\
 16 &= c^2 - 9 \\
 c &= \pm 5
\end{align*}
\]

Vertices: \((\pm 3, 0)\), foci: \((\pm 5, 0)\)

Use \(a = 3 \), and \(b = 4 \), to draw the auxiliary rectangle.

17. Parabola, axis horizontal. From \(y^2 = -3x \), we have

\[
y^2 = 4 \left(-\frac{3}{4} \right) x.
\]

Inserting 4

Thus, \(p = -\frac{3}{4} \), placing the focus at \(\left(-\frac{3}{4}, 0 \right) \). (See sketch in answer section of book.)

18. \(x^2 = 9y \) or \(x^2 = 4 \left(\frac{9}{4} \right) y \)

Parabola, \(p = \frac{9}{4} \), so that the focus is at \(\left(0, \frac{9}{4} \right) \) and the directrix is \(y = -\frac{9}{4} \).

19. \(y^2 + 6y + 4x + 1 = 0 \)

\[
\begin{align*}
 y^2 + 6y &= -4x - 1 \\
 \left(y + \frac{3}{2} \right)^2 &= -4x - 1 + 9 \\
 \left(y + \frac{3}{2} \right)^2 &= -4x + 8 \\
 \left(y + \frac{3}{2} \right)^2 &= 4(-1)(x - 2) \\
 p &= -1
\end{align*}
\]
Parabola, vertex at (2, -3), focus at (2 - 1, -3) = (1, -3).

20. \(x^2 + y^2 - 8x + 10y - 4 = 0 \)
\[x^2 - 8x + y^2 + 10y = 4 \]
Add \(\left[\frac{1}{2}(-8) \right]^2 = 16 \) and \(\left[\frac{1}{2}(10) \right]^2 = 25 \) to each side:
\[x^2 - 8x + 16 + y^2 + 10y + 25 = 4 + 16 + 25 \]
\[(x - 4)^2 + (y + 5)^2 = 45 = 9 \cdot 5 \]

Circle with center at (4, -5) and radius 3\(\sqrt{5} \).

21. \(16x^2 - 64x + 9y^2 + 18y = 71 \)
\[16(x^2 - 4x) + 9(y^2 + 2y) = 71 \quad \text{factoring 16 and 9} \]
Note that \(\left[\frac{1}{2}(-4) \right]^2 = 4 \) and \(\left[\frac{1}{2}(2) \right]^2 = 1 \). Inserting these values inside the parentheses and balancing the equation, we get
\[16(x^2 - 4x + 4) + 9(y^2 + 2y + 1) = 71 + 16 \cdot 4 + 9 \cdot 1 \]
\[16(x - 2)^2 + 9(y + 1)^2 = 144 \]
\[\frac{(x - 2)^2}{16} + \frac{(y + 1)^2}{16} = 1. \quad \text{dividing by 144} \]

Ellipse, center at (2, -1), major axis vertical, \(a = 4, \ b = 3 \).

22. \(x^2 + 4x + 8y - 20 = 0 \)
\[x^2 + 4x = -8y + 20 \]
\[x^2 + 4x + 4 = -8y + 20 + 4 \quad \left[\frac{1}{2}(4) \right]^2 = 4 \]
\[(x + 2)^2 = -8(y - 3) \]
\[(x + 2)^2 = 4(-2)(y - 3) \quad \text{axis vertical, vertex at (-2, 3)} \]
Since \(p = -2 \), the focus is at \((-2, 3 - 2) = (-2, 1) \). (See graph in Answer Section.)
23. \(x^2 - y^2 - 4x + 8y - 21 = 0 \)
\(x^2 - 4x - y^2 + 8y = 21 \)
\((x^2 - 4x) - (y^2 - 8y) = 21\)
Adding \(\left[\frac{1}{2}(-4) \right]^2 = 4 \) and \(\left[\frac{1}{2}(-8) \right]^2 = 16 \) inside the parentheses and balancing the equation we get
\((x^2 - 4x + 4) - (y^2 - 8y + 16) = 21 + 4 - 1(16) \)
\(\frac{(x - 2)^2}{9} - \frac{(y - 4)^2}{9} = 1. \)
Hyberbola, center at \((2, 4)\).

24. Since the directrix is \(x = -2 \), the focus is at \((2, 0)\). Form: \(y^2 = 4px \) or \(y^2 = 8x \).

25. Form:
\((x - h)^2 = 4p(y - k). \)
axis vertical
Distance from vertex \((1, 3)\) to directrix \(y = 0 \) is 3, so that \(p = 3 \). The equation is
\((x - 1)^2 = 4(3)(y - 3) \) \((h, k) = (1, 3), \ p = 3 \)
or
\((x - 1)^2 = 12(y - 3). \)

26.

Distance from center to one vertex is 4, so \(a = 4 \)
Distance from center to a focus is 2, so \(c = 2 \)
Also, \(b^2 = a^2 - c^2 = 16 - 4 = 12 \)
Form: \(\frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1 \) Major axis vertical
Equation: \(\frac{(x + 2)^2}{12} + \frac{(y + 4)^2}{16} = 1 \)

27. Form: \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; \ a = 4; \ c = 3; \ b^2 = a^2 - c^2 = 16 - 9 = 7. \)
Equation: \(\frac{x^2}{4^2} + \frac{y^2}{7^2} = 1. \)
28. Since the vertex is at (3,0), \(a = 3 \). By Eq. (1.21)

\[
y = \pm \frac{b}{a} x = \pm \frac{3}{4} x \quad \text{or} \quad \frac{b}{a} = \frac{3}{4}
\]

Since \(a = 3 \), \(b = \frac{9}{4} \). Form: \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) Transverse axis horizontal;

Equation: \(\frac{x^2}{9} - \frac{y^2}{(9/4)^2} = 1 \) or \(9x^2 - 16y^2 = 81 \)

29.

\[
\begin{array}{c}
\text{y} \\
(0,5) \quad \text{vertex} \\
(0,2) \quad \text{center} \\
(0,-1) \quad \text{vertex} \\
(0,-2) \quad \text{focus}
\end{array}
\]

Center: \((0, 2)\) (midway between vertices). Distance from center to vertex is 3, so that \(a = 3 \). Distance from center to focus is 4, so that \(c = 4 \). Thus \(b^2 = c^2 - a^2 = 16 - 9 = 7 \). Since the transverse axis is vertical, the form is

\[
\frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1,
\]

and the equation is

\[
\frac{(y - 2)^2}{9} - \frac{x^2}{7} = 1. \quad (h, k) = (0, 2)
\]

30. Form: \((y - k)^2 = 4(p)(x - h) \)

Vertex: \((-4, 2)\) [midway between focus and directrix]

Since \(p = -4 \), the equation is \((y - 2)^2 = -16(x + 4) \)

31.

\[
\begin{array}{c}
\text{y} \\
(0,3) \quad \text{focus} \\
\text{vertex} \\
\hline
y = 1 \\
0 \\
x
\end{array}
\]

Since the vertex is midway between the focus and directrix, its coordinates are \((0, 2)\). It follows that \(p = +1; \) so the equation is

\[
(x - 0)^2 = 4(1)(y - 2) \quad \text{or} \quad x^2 = 4(y - 2).
\]
Chapter 1. Introduction to Analytic Geometry

32.

Distance from center to a vertex is 2, so $a = 2$
Distance from center to a focus is 3, so $c = 3$
Also, $b^2 = c^2 - a^2 = 9 - 4 = 5$
Form: \[
\frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1 \quad \text{Transverse axis vertical}
\]
Equation: \[
\frac{(y + 1)^2}{4} - \frac{(x - 2)^2}{5} = 1
\]

33.

$c = 2$ (distance from center to focus); $a = 4$ (distance from center to vertex);
$b^2 = a^2 - c^2 = 16 - 4 = 12$. Form: \[
\frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1. \quad \text{major axis vertical}
\]
Equation: \[
\frac{(x - 4)^2}{12} + \frac{(y + 1)^2}{16} = 1. \quad (h, k) = (4, -1)
\]

34. See graph in Answer Section.

35. $y = (x + 1)^3$

 \underline{Intercepts}. If $x = 0$, then $y = 1$. If $y = 0$, then $x = -1$.

 \underline{Symmetry}. None: replacing x by $-x$ or y by $-y$ changes the equation.

 \underline{Asymptotes}. None: the equation is not in the form of a fraction with x in the denominator.

 \underline{Extent}. All x and all y.

 \underline{Graph}.

36. See graph in Answer Section.
37. **Intercepts**. If \(x = 0 \), then \(y = 0 \); if \(y = 0 \), then \(x(x - 4) = 0 \) and thus \(x = 0, 4 \).

Symmetry. Replacing \(y \) by \(-y\), we get \((-y)^2 = x(x - 4)\), which reduces to the given equation. So the curve is symmetric with respect to the \(x\)-axis.

Asymptotes. None (equation is not in the form of a fraction).

Extent. Solving for \(y \) we have
\[
y = \pm \sqrt{x(x - 4)}.
\]

If \(x > 4 \), \(x(x - 4) > 0 \). If \(0 < x < 4 \), \(x(x - 4) < 0 \) [for example, if \(x = 2 \), we get \(2(2 - 4) = -4 \)].

If \(x < 0 \), \(x(x - 4) > 0 \), since both factors are negative. So the extent is \(x \leq 0 \) and \(x \geq 4 \).

Graph.

![Graph of \(y = \pm \sqrt{x(x - 4)} \)](image)

38. See graph in Answer Section.

39. \[y = \frac{x}{x^2 - 4} \]

Intercept. \((0, 0)\)

Symmetry. Replacing \(x \) by \(-x\) and \(y \) by \(-y\) we get
\[
-y = \frac{-x}{(-x)^2 - 4}
\]

which reduces to
\[
y = \frac{x}{x^2 - 4}.
\]

The graph is therefore symmetric with respect to the origin.

Asymptotes. Vertical: setting the denominator equal to 0 results in
\[
x^2 - 4 = 0 \quad \text{and} \quad x = \pm 2.
\]

If \(x \) gets large, \(y \) approaches 0, so that the \(x\)-axis is a horizontal asymptote.

Extent. All \(x \) except \(x = 2 \) and \(x = -2 \).

Graph.

![Graph of \(y = \frac{x}{x^2 - 4} \)](image)

40. See graph in Answer Section.
41. Placing the vertex at the origin, one point on the parabola is (0.90, 0.60), as shown in the figure. The form is \(y^2 = 4px \). To find \(p \), we substitute the coordinates of the point in the equation:

\[
(0.60)^2 = 4p(0.90)
\]

\[
p = \frac{(0.60)^2}{(4)(0.90)} = 0.10.
\]

\[(0.90,0.60)\]

To be at the focus, the light must be placed 0.10 feet from the vertex.

42. \[
\frac{x^2}{25.0^2} + \frac{y^2}{15.0^2} = 1 \quad \text{where} \quad a = 25.0, \ b = 15.0
\]

Let \(x = 15.0 \) and solve for \(y \):

\[
\frac{15.0^2}{25.0^2} + \frac{y^2}{15.0^2} = 1 \quad \text{and} \quad y = 12.0 \text{ft}
\]

43. \[
V = (6 - 2x)(6 - 2x)x = x(6 - 2x)^2
\]

Volume=length\times width\times height.

See graph in answer section of book.

44. See graph in answer section of book.

45. See Exercise 41, Section 1.9:

\[
e = \frac{A - P}{A + P};
\]

\[
P = 4000 + 119 = 4119 \text{ mi}; \ A = 4000 + 122,000 = 126,000 \text{ mi};
\]

\[
e = \frac{126,000 - 4119}{126,000 + 4119} = 0.94.
\]